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This paper proposes a rational, systematic and efficient multicriteria fuzzy optimum design method for a
large-scale prestressed concrete bridge system that is developed combining suboptimization concept,
mtroduction of measure membership functions for relative evaluation of all objective functions and fuzzy
decision-making techniques. The proposed design method is applied to an optimum design problem of a
large-scale prestressed concrete bridge system in which three objectives; total construction cost, aesthetics and
seismic safety of the bridge system are taken into account. The rationality, systematic design process and
efficiency of the proposed design method are demonstrated.
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1. Introduction

The practical structural design problem mnvolves several
different characteristic objective functions such as economy,
functionality, serviceability, maintainability, safety and
aesthetics with the surrounding situation of construction site.
Conflicts can arise between these objectives, for example,
economy versus safety and serviceability. Moreover, the value
of each objective function has to obtain the client and/or general
consent and satisfy the designer's preferences and design
emphases. Furthermore,  the relative evaluations among
different characteristic objectives have some tolerance or
fuzziness. Therefore, the designers are always forced to seek for
the best-compromise solution rationally by relatively evaluating
these different characteristic objectives satisfying design
requirements. This optimum decision-making problem can be
recognized as a multicriteria optimum design problem with
fuzziness.

. Since the present concept of multicriteria optimization is
ongmated by Parato in 1896, numerous contributions have
been done in the field of optimization theory, operation
research, control theory and engineering design. In the
structural optimization field, the literatures have been appearing
since the late 1970's and the solution methods are reviewed by
Eschenauer et al [1], Osyczka [2] and Koski [3] [4].

The multicritenia optimization problems have been solved
by two stage process, namely, generation of Pareto optima and
decision-making process using Pareto optima. The Pareto
optima have been generated using different methods, namely,
linear weighting method, minimax approach and use of
distance function, constraint method and so on. The decision-
making is done by interactive methods, choice by comparisons,
a prioni fixed parameters and so on However, no
comprehensive multicriteria optimum design method has been
developed which can deal with most of the psychological
characteristics to be considered in the design process, such as
fuzziness, design emphases, designer's preferences, general
and/or client consent and so on.

In the field of optimum design of prestressed concrete
structure, the optimum design problem considering single
objective has been studied considerably, however, a quite
few study has been done on the multicriteria optimum design
problem of prestressed concrete structures. Lounis and Cohn
[5] have studied on the multicritenta optimum design problem
of prestressed concrete structures in which cost and initial
camber are taken into account as the objectives and the
optimum solution is determined using Pareto optima and trade-
off approach.

This paper proposes a rational, systematic and efficient
multicriteria fuzzy optimum design method for a large-scale
prestressed concrete bridge system which is developed
combining suboptimization concept, mtroduction of measure
membership functions for relative evaluation of all objective
functions and fuzzy decision-making techniques. The proposed
design method is applied to an optimum design problem of a
large-scale prestressed concrete bridge system in which three
objectives, total construction cost, aesthetics and seismic safety
of the bridge system are taken into account. The rationality,
systematic design process and efficiency of the proposed design
method are demonstrated.

2. Proposed multicriteria fuzzy optimum design method

In this paper, a multicriteria fuzzy optimum design method
for a large-scale structural system which is developed
combining suboptimization concept, introduction of measure
membership functions and fuzzy decision-making techniques.
The proposed optimun design method is conducted by the
following design process.

At the first step of the design process, the design vanables
to be dealt with in the optimum design problem of structural
system are classified into two sets by taking into account the
significance and the degree of contributions of each design
variable to each objective function. The design variables which
affect to all objectives significantly are classified as the
common design variables X, and the design vanables to be



dealt with only in the optimization process of individual
objectives are termed as the objective oriented design variables
Xo. In this study, it is assumed the objective oriented design
variables of each objective are exclusive of those of other
objectives. The objective functions are also classified into two
sets, namely, a set of design parameter objectives f; and another
set of objectives to be suboptimized subject to the various
design conditions £,. The design parameter objectives £, specify
discretely the design conditions for optimization problems of the
objectives to be suboptimized f;.

At the second step, the optimization of the objectives to be
suboptimized are conducted for all combinations of discrete
values of the common design variables X, and the design
parameter objectives £,

Then, at the third step, the measure membership functions
of objectives to be suboptimized f; are introduced by taking into
account relative evaluation of the corresponding suboptimized

data of f; for all discrete design conditions, fuzziness involved

in decision-making process, the client and/or general consent,
designer's preferences and design emphases. The measure
membership functions of the design parameter objectives £, are
also introduced considering the significance of values of f;.

At the fourth step, the membership functions of sub-
optimized relationship of all objective functions with respect to
a certain common design variable for the discrete design
conditions are introduced using corresponding measure
membership functions as datum.

At the fifth step, the optimum values for a certain common
design variable for the discrete design conditions are specified
by the other discrete common deign. variables and the discrete
design parameter objectives are determined by the weighted
operator method in which the relative weights of the objective
functions are determined by the client and/or general consent,
designer's preferences and design emphases of the structural
system.

The optimum values of one of remaining common design
variables or one of design parameter objectives for discrete
conditions specified by the other discrete common design
variables and the other design parameter objectives are
obtained by infroducing a continuous membership finction
which is derived by amranging the results obtained in the
previous step. This procedure is iterated until all optimum
values of common design variables and the design parameter
objectives are obtained. At the final step of this procedure, we
can obtain the global optimum value of the final common
design vanable or final design parameter objective.

The global optimum values of other common design
variables and other design parameter objectives can be
determined by a backward interpolation process using the
previously derived relationships.

The global optimum values of objective oriented design
variables X7, = can be determined by suboptimizing f; for the
set of the global optimum values of common design variables

X, and design parameter objectives f, .

The proposed nuilticriteria fuzzy optimum design method
is applied to an optimum design problem of a large-scale
prestressed concrete three-span continuous bridge system in
which the total construction cost, the aesthetics and the seismic
safety of the bridge system are considered as objectives. The
detals of the proposed optimum design method is described in
the following sections.

3. Primary optimum design problem of the
prestressed concrete bridge system

3.1 Bridge system

The bridge system considered in this paper consists of
a three-span parabolic shape prestressed concrete box
girder (superstructure) and four RC piers and RC pile
foundations (substructure) as shown in Fig. 1. The bridge
has a total length of 200m and a width of 14m. The
superstructure is elevated 30m from the top of the RC
foundations. The geological condition of construction site
is assumed that a bearing laver with N value 30 exists
underneath a 10-m depth sand layer with N value 10.

3.2 Objective functions

In the multicriteria fuzzy optimum design problem of the
prestressed concrete bridge system, the total construction cost
of the bridge system f; to be minimized, the aesthetics £ to be
maximized and the seismic safety of the bridge system f; to be
maximized are dealt with as the objective functions. As it has
been experienced at the huge earthquake like Hanshin-
Awaji great earthquake in Kobe 1995, the collapse of piers
and foundations of the bridge system at urban area causes
huge damages not only the direct collapse of the bridge
system itself but also the tremendous secondary damages
caused by the blockages of traffic flows. However, if the
bridge system is constructed in the country site or
mountain site, the secondary damages caused by the
collapse of piers and foundations might be smaller than
that at urban area. For this reason, the magnitude of the
safety parameter to be used for the design of the
substructure is very significant design parameter from the
viewpoint of maximization of the seismic safety of the
bridge system, in other words, minimization of total social
losses caused by the collapse of the bridge system, and
then the value of the safety parameter f. for the design of
the substructures is dealt with as the objective function
instead of the direct use of f;.

For the reason that the safety parameter f; affects so much
to the total construction cost, we define £; as a design parameter
objective and other two objectives, the. total construction cost £;
and the aesthetics £, are dealt with as the objectives to be
suboptimized dealing with the objective oriented design
variables for discrete design conditions which are specified by
the primary design constraints and discrete values of the safety
parameter fs.

3.3 Design variables
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Fig.1 Design variables of a three-spans continuous
prestresssed concrete box girder bridge system
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In the prestressed concrete bridge system shown in Fig, 1,
the girder height is assumed to be varied parabolically at the
center span and side spans and it takes the value H at
intermediate supports and H/2 at the end supports and the
center of center span. Since the span ratio S (5/1/k) and girder
height H affect significantly two objectives of the total
construction cost and the aesthetics, Sr and H are dealt with as
the common design variables X, of the bridge system, namely,
X={Sr, HI"

In the suboptimization of the superstructure, the parabolic
prestressing force P,, linear partial prestressing forces Py, P
and Py, thickness of the bottom slab of box section ¢ and tendon
eccentricities of parabolic prestressing e;, e and es as shown in
Fig. 1 are dealt with as the design variables. These design
vanables affect only to the construction cost of the
superstructure. Therefore, we deal with these design variables
as objective oriented design variables X, which belong to
construction cost of the superstructure, namely, X., =[P, P, e,
A", where P=[ Py, Py, Ps)', e=les, ez, es]".

The substructure of the prestressed concrete bridge system
consists of four rectangular shape RC piers and four RC pile
foundations as shown in Fig. 1. In the pier optimization, each
pier is assumed to consist of three segments with same width
and depth, and these values are determined as constants from
the aesthetic viewpoint. Then only the reinforcement areas A
=4 jkl, Agi, 4, j;f’]T in each pier segment shown in Fig. 1 are
dealt with as the design variables, in which j is the number of
the RC pier segment (j = 1, 2, 3) and % is the number of the RC
pier k=1,2,3,4). :

In the suboptimization problem of rectangular RC pile
foundation, number of the RC piles in the direction of the
bridge axis Py and the number in the perpendicular direction P,,
diameter of pile D and spaces of piles S in each pile foundation
are dealt with as the design variables (see Fig. 1). These design
variables affect only to the construction cost of the substructure,
therefore, we deal with these design variables as objective
oriented design variables X, which belong to the construction
cost of the substructure, namely, Xup = [As, P, P, D, S]T,
Where As_jk=[Asj[(1, Asjkz, Asjk3]T, Px:[Px 1 -Px 2, Px 3, Px 4]7 Py=[P.v 1
Py2, Pyt Pyd]', DDy, D3, D3, DA, S=[81, 52, 85, 84]'.

3.4 Formulation of the multicriteria optimum design problem
of the prestressed concrete bridge system without fuzziness

Using the terminology defined in the previous section, the
multicriteria optimum  design problem of the prestressed
concrete bridge system in which no fuzziness is taken into
account is formulated as follows,

find Sr, Hy, Xap, Xoub » which
minimize  filXop, Xos, S7, H, ) = Wap(Xow, St, H)
+ Wit Xeus, St, H, ﬁ) D
maximize  f(Sr, H) 2
maximize  f; 3
subjectto  g(Xap, St H) <0 /=1,....qup @
G, Sr H, f) <O k=1,.....gsut o)

where g; and g, are, respectively, design constraints of the
superstructure and the substructure and ¢g, and g.s are,
respectively, number of design constraints for suboptimization
of the superstructure and the substructure.

4. Suboptimization of the total construction cost and the
aesthetics of the bridge system

As described in section 3.2, we deal with f; as a design
parameter objective and it specifies discrete design conditions.
Then the suboptimization problems on the total construction
cost f; and the aesthetics f; are solved for every combination of
discrete values of H, Srand f..

4.1 Discrete combinations of Sy, H and f;

In order to obtam the minimum total construction costs of
the bndge system, we solve the suboptimization problem of
construction cost of the superstructure for every combination of
discrete values of Sr and A and suboptimization problem of
construction cost of the substructure for every combination of
discrete values of Sz, H and f. As the discrete values of
common design variables, span ratios Sr = 0.5, 0.61, 0.75,
0.92 and girder heights at the interior support H = 4.5m, 5.0m,
5.5m, 6.0m, 6.5m, 7.0m, 7.5m, 8.0m, 8.5m are considered. As
the discrete values of parameter objective, the safety parameter
of the substructure f= 1.0, 1.2, 1.4, 1.6, 1.8 are taken into
account.

4.2 Suboptimization of construction cost of the superstructure
for discrete combination of Sr and H

(2) Design constraints

In the suboptimization of the superstructure, stress and
cracking constraints in the serviceability limit state and
flexural-strength and ductility constraints in the ultimate limit
state specified by the ACI code are taken into account.

(b) Construction cost of the superstructure

Since the values of £; affects only to the construction cost of
the substructure, the suboptitmization process of construction
cost of the superstructure is conducted for every combination of
discrete values of Sr and H. The construction cost of the
superstructure for the given combination of discrete Sr and H,
Wop Xy, Sr, H), can be calculated as the summation of the
cost of prestressing tendon and the cost of concrete, namely,

W, (X, ,SnH) = C,d,(B)+ YIC,A (PY,(e)+ C.d (0] ©)
=)

where 4 (p,)=P, /7, A(B)=R/f. - Jr is the allowable
tensile stress of prestressing tendon. [(e) and / are,
respectively, the length of prestressing tendon in the jth girder
element and the length of the jth girder element. Az is the
cross-sectional area of concrete of the ith girder element. C,
and C. are, respectively, the relative unit costs of 3prestressing
tendon and concrete, and assumed as 6130800 /m” and 24000
m’, respectively. These relative unit costs are estimated
including the constant (imtial) expenditure also. m is the
number of girder elements.

(¢) Primary suboptimization problem and suboptimization
algonthm of the superstructure

By considering the design variables, design constraints and
the total construction cost of the superstructure described
above, the primary suboptimization problem for the discrete
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combination of Sy and H can be formulated for the

superstructure as

find Xop [=Pp, Pye,i]', which

minimize W Xeup, Sr, H)

subject to g,(P,P,e)<0 i=l..q, O

The suboptimization problem described above is solved by
an optimal structural synthesis method combining the convex
approximation concept and a dual method (Fleury and Braibant
[6], Ohkubo and Asai {7]). Utilizing the convex and linear
approximation concept, the objective function and behavior
constraints are, respectively, approximated by the first-order
terms of Taylor series expansions with respect to the direct
design variables or the reciprocal design variables. The first-
order partial derivatives of behavior constraints with respect to
the primary design variables are calculated by the forward-
difference method. The above approximate subproblem is
solved by the dual method in which the separable the
Lagrangian function is minimized with respect to the primary
design variables and maximized with respect to the Lagrange
multipliers (dual vanables). At the minimization process, the
primary design variables are improved by simple expressions
derived from stationary conditions of the separable Lagrangian
function. Then, at the maximization process, the dual variables
are improved by a Newton-type algorithm. The minimum cost
of the superstructure, optimum P,, P, £, e can be determined by
iterating the above approximate formulation and min.-max.
process of the separable Lagrangian function.

4.3 Suboptimization of the construction cost of the substructure
for discrete combination of Sy, H and f;

The three-span continuous prestressed concrete box girder
(superstructure) is supported by four piers and four pile
foundations (substructure) as shown in Fig. 1, therefore, the
suboptimization of the substructure should be conducted for
each pier and its pile foundation separately.

The bridge system 1s subjected to dead load (DL), live
loads (L) and horizontal force (F(a)) caused by the

horizontal acceleration (&) due to an earthquake motion. In
this paper it is assumed that the magnitude of horizontal
force acting to the top of the ith pier, F(qa),, is caloulated
by,

Fla), =a- Rsupi ®

where R, 1s the vertical reaction of the ith pier due to the

supi
dead load of the superstructure.

In this paper, the safety parameter f; is considered as
the parameter objective and ¢¢ is assumed to be a function
of f; and calculated by

a(f)=02-, ®
This value a(f,)=0.2 for f; =1.0 is determined as the

standard value of horizontal acceleration by referring the
Seismic Design Code Specification for Highway Bridge
(Japan Road Association [8]).

(@) Design constraints of a RC pier

ARC pier consists of three segments, and the width, depth
and height of each segment are assumed to be the same from

aesthetic viewpoint. In the suboptimization problem of the kth
segment of the RC pier for the combination of discrete Sr,
and f; the ultimate limit state constraints gy under vertical force
and bending moments due to horizontal forces in the directions
of the bridge axis (g=1) and perpendicular to the bridge axis
(g=2) at an earthquake are taken mto account (Japan Road
Association [8]).

(b) Construction cost of a RC pier segment

The construction cost of the ith segment of the jth RC pier
Wey for the discrete Sy, H and f; can be calculated as the
summation of costs of concrete and reinforcement. of the
segment.

W (Ao Aoy A5y ST H, ) :CSZA;'LJ]U +C, Aty (A0

i=]

P

where 4,4 (i=1,2,3) and A,y are, respectively, areas of steel
reinforcements and concrete. Jj; is the length of the kth segment
of the jth pier. The relative unit costs of steel reinforcement Cs
and concrete C, are assumed, respectively, as 110000/m” and
24000/m”.

(¢) Primary suboptimization design problem of the RC pier
segment

By considering the design variables described in 3.3 and
design constraints in 4.3 (a), the primary suboptimization
design problem can be formulated for the kth segment of the
Jth RC pier as

find Asis Astf 2 Ag’ . which
minimize WoilAsy', Asif, Asii’, Sr, H, £
SUbj ectto g}eq/(/{kp‘/{kﬁ/‘fk SrH,1)<0 q=12 (11

The suboptimization problem of the above RC pier segment is
also solved using the dual method described in 4.2 (¢).

(d) Design constraints of a RC pile foundation

A RC pile foundation consists of a rectangular concrete
footing and P,xP, piles. In the suboptimization problem of the
RC pile foundation, the constraints on bearing or tensile
capacities of piles are taken into account as design constraints
(Kokubu et al. [9]). The side constraint that ensures the
minimum pile space is also considered.

() Construction cost of the RC pile foundation

The construction cost of the RC pile foundation for the
discrete combination of Sr, H and f; WAD, S, Py, Py, Sr, H, f5),
can be calculated as the summation of the costs of concrete
footing and piles.

W_(D) ‘S PJ‘J P}” Sr’ Hﬁ)=
CrdiD, S, Py, Ph + Cpeddpe DIPLoky (12)

The relative unit costs of concrete for footing Cy and pile Cp,
are assumed, respectively, as 24000 /m” and 30000 /m’. Ar(D,
S, Py, Py) and A,(D) are, respectively, bottom area of the
rectangular concrete footing and cross-sectional area of pile. J,
1s the pile length. / 1s the average height of concrete footing,
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{(f) Primary suboptimization problem of the RC pile
foundation

By considering the design variables described in 3.3, the
design constraints in 4.3 (d) and the construction cost in 4.3(¢),
the primary suboptimization problem can be formulated for
each RC pile foundation as

find D, S, P,, P, which
minimize WiD, S, P, Py, Sr.H, 1) 13)
subject to g, (DS.E.B.SeH f)<0 g=123 )

§OSEESEHH<0 =12 as

The above suboptimization problem of the RC pile
foundation is solved quite simply and easily by applying a
systematic iterative and comparing process for discrete sets of
the design variables D, §, P, P,.

4.4 Surnmarization of the suboptimized data of f; with respect
to H for every discrete Sr and f;

The suboptimization processes of the superstructure and the
substructure described in 4.1~ 4.3 are conducted for all discrete
combinations of Sr, H and f; within their comparable ranges
described in 4.1. The minimum total construction cost for a
discrete set of Sr, H and f; f, mn (Xop, Xas Sr, H, f9), 18
calculated by the following expression,

i min Ko Xsits St H, =W X, Sr, H)
YW (A, S LY IWD,S, BB ScH ) (16)

By arranging the minimum total construction costs of the
bridge system obtained by (16) for all discrete combinations of
Sr, H and f,, the relationships between the minimum total
construction cost of the bridge system and H for every discrete
Sr and f; are introduced. Fig.2 shows two examples of this
relationship for Sr=0.61, f=1.2 and Sr=0.75, Sr=1.2.

4.5 Suboptimization of the aesthetics of the bridge system

The aesthetics of the bridge system is affected so much by
many factors such as combination of values of common design
variables Sy and H, harmony in color of the bridge system with
surrounding, situation of construction site and so on, but
objective oriented design variables X, and the safety parameter
fs do not affect so much to the evaluation of the aesthetics of the
bridge system. Therefore, in this study, the preparation of the
perspective views of the bridge system for all discrete
combinations of common design variables Sy and H using
reasonable material and tools is considered as the
suboptimization process of the aesthetics of the bridge system.

S. Relative evaluation of all objective functions £, £, and f;

In this optimum design problem, three different
characteristic objectives are considered and relative evaluation
of these objectives has some tolerance or fuzziness.
Considering these charactenistics of design problem the fuzzy
decision-making techniques are adopted for the determination
of the global optimum solution as described in 2. As the first
step of mutual evaluation of the objectives, we introduce the
measure membership functions for all objectives.
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5.1 Introduction of the measure membership function of the
minimum total construction cost 5,

The measure membership function of the total construction
cost /3, is introduced by inspecting the budget limitation for
the total construction cost and the range of variation of the
suboptimized minimum total construction costs of the bridge
system for all discrete sets of common design variables Sr, H
and the safety parameter f;. In this introduction process of
measure membership function, the designer's preferences,
design emphases, client and/or general consent are also to be
satisfied. We decided that the smallest value, 1.54x10%, and the
largest value, 2.63x108, among the suboptimized minimum
total construction cost for all discrete set of S, H and f; have,
respectively, the maximum and the minimum membership
values, namely, 1.0 and 0.0, and the membership value is
varied linearly for the total construction costs between the
maximum and the minimum values. The measure membership
function is then mntroduced as that shown m Fig.3.

5.2 Introduction of the measure membership function of the
aesthetics: 3,

The measure membership function of the aesthetics
objective 3, is introduced by evaluating relatively aesthetics

of perspective views of the bridge system for all discrete
combinations of common design variables Sy and [ which are
prepared in the suboptimization process of the aesthetics of the
bridge system in 4.5. As the measure membership function of
the aesthetics of the bridge system the membership function
shown in Fig.4 is assumed, in which the bridge system with
S$r=0.61, H=6.5m is decided as the miost beautiful bridge
system giving the best harmony with surrounding situation of
construction site.
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5.3 Introduction of the measure membership function of the
seismic safety of the bridge system: £,

As described in 3.2 the total social damages caused by the
collapse of structural system due to an earthquake are
significantly depend on the characteristics of the construction
sites such as urban area, country site and mountain site. If the
bridge system is constructed in urban area, the seismic safety of
the bridge system has to be greater than these for country site
and mountain site. In the practical design problem, the measure
membership function of the seismic safety is to be determined
by evaluating the total social loss caused by the failure of the
structural system designed with seismic safety f7. In this study,

it 1s assumed that the bridge system designed with £=1.0 might .

cause twice much of social loss compare with that of the bridge
system designed with £=1.8. Then, the membership value of
the bridge system designed with £;=1.0 is assumed to be 1/2 of
that of the bridge system designed with £;=1.8. The social
losses caused by the failures of the bridge systems designed
with £=1.2, 1.4, 1.6 are assumed to be linearly proportional to
Js Therefore, the measure membership fimction of seismic
safety of the bridge system /£, is introduced as that shown in

Fig. 5.

5.4 Modification of the measure membership functions of f
with respectto 5,

It is clear that if the seismic safety (safety parameter) is
specified as the small value it makes total construction cost of
the substructure economical, however, the probability of
collapse of the bridge system increases and in consequence the
secondary damages caused by the collapse of the bridge system
might be increased. Therefore, from the viewpoint of the
minimization of total damages due to an . earthquake the
measure membership fimction of the total construction cost of
the bridge system /£, (f;) has to be modified with respect to
the seismic safety of structural system. In this study, the
modified measure membership functions of the total
construction cost for discrete f; , 4,,(f;, f,) is assumed to be
obtained by multiplying f,.(7.) to 8,.(f, ). The modified
measure membership functions 4, (f,, f,) are shown in Fig6.
Meanwhile, the membership function of the aesthetics 1s not
affected by the safety parameters, therefore, the measure
membership function of the aesthetics S, is not necessary to
be modified by 5 .

5.5 Introduction of membership functions of suboptimized

objectives

(a) Introduction of membership functions of the total construc-
tion cost with respect to H for every discrete Sr and f;

The membership function of the minimum total
construction cost with respect to girder height A for the kth
discrete span ratio Srx and the jth discrete safety parameter f,
u,(H ,Sr,, f,;) , can be introduced using the modified measure

membership function of the total construction cost
corresponding to the jth discrete safety parameter f; (see Fig.6)
and suboptimized minimum total construction costs for all
discrete combinations of H; (i=1,..,9), Srx and fy;. Fig. 7 shows
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the membership finction of the total construction cost with
respect to girder height H for Sr=0.61 (=Sry) and f=1.2 (=fy).
The membership functions stated above are mtroduced for
every combination of discrete Srx and fy where k=1,..4 and
=15

(b) Introduction of membership functions of the aesthetics with
respect to H for all discrete S

The membership function of the aesthetics with respect to
girder height H for the 4th discrete span ratio Sre, 1, (H,S57,),
1s mtroduced by evalvating relative aesthetics of perspective
views of the bridge system with girder height A; (=1...,9) for
St referring to the measure membership function of the
aesthetics S, as datum (see Fig4). The membership
functions of the aesthetics with respect to girder height H for

every discrete span ratio S7=0.5, 0.61, 0.75 and 0.92 are shown
inFig.8.

6. Determination of the global fuzzy optimum solution

In the previous sections, we introduced the membership
functions of the minimum total construction cost with respect to
H for all discrete span ratios Sr and the safety parameter f; and
the aesthetics with respect to H for discrete Sr. Then, using
these membership functions, we can determine the fuzzy
optimum girder heights Hoy for each combination of discrete
span ratios Sr and discrete safety parameters f; by the weighted
operator method with assumed weight ratio. Then we can
ntroduce the relationship between maximum value of
membership at the optimum girder height A, and span ratio
for every discrete f; (=1...,5). The optimum span ratios for
every discrete f; can be obtained by searching the maximum
values of the relationships. The maximum membership values
for every discrete fy (=1,..,5) are summarized with respect to
the safety parameter f, and the global optimum safety
parameter f*  can be obtained by searching the maximum
membership value in the relationship. The final global
optimum values of the objective oriented design variables
X:,, can be determined by suboptimizing f, for the set of the
global optimum values of common design variables X #_ and
design parameter objectives 1, . '
6.1 Determination of the optimum girder heights for every

discrete span ratio S and the safety parameter f;

In the weighted operator method, membership functions of
the minimum total construction cost and the aesthetics are
multiplied, respectively, by the normalized corresponding
relative weights W, and W,, where WAW.=1.0. These relative
weights are determined by the client and/or general consent, the
designer’s preferences and design emphases of the structure. In
this paper, these weights are assumed as W,=0.6 and W, =0.4.
Then, the weighted maximum membership value x4, ,, and
the corresponding optimum girder height Hy; ., for the &th span
ratio Sr and the jth safety parameter f5 can be determined by
the following expression of the weighted operator method.
Fig9 shows the determination process of eq.17 for Sr; =0.61
and f;2 =1.2. The max. ¥y +W ) is obtained as 0.66 for
H=12m :

].Oﬂ

Sr=0.75,
Sr=0.93

0.8 4
0.6 4

0.4 4

Value of membership

0.2 4

0.0 - — r —

4.0 5.0 6.0 7.0 8.0 9.0
Girder height ~ H(m)

Fig. 8 Membership functions of the aesthetics w. r. t.
the girder height A for Sr=0.5, 0.61, 0.75,0.93

[Wt Wa=0.6:0.4, Sr=0.61, f5=1.2 |

0.8 - eeem-
'v -~ H,
« A} ‘
'_8 Wty + W1, * “‘
5 0.6 -
2 ) N
g Wopts
g 0.4 4 v
Yt b ———
o TN
Q 4 - ]
= - - -~
5024 7R .
et 1w, H,=72m
0.0 T T T T

4.5 55 6.5 7.5 8.5
Girder height H (m)

Fig. 9 Determination of maximum membership value
and optimum A by the weighted operator method

ﬂk,j,opr (Hk,j,apta Sr}c b .f.g) = maX{VVI/’II (Ha‘s'rk > fg)
+Walua (H7 Srk)} (17)

6.2 Determination of optimum span ratios for every discrete
safety parameter objective f;;

The relationships between weighted maximum member-

ship values 41, .., (H, 0T, f,) (e=1,....4) and span ratio

Sr for discrete fy can be introduced for every discrete safety -
parameter f; (=1,..,5). In Fig. 10 the relationship for f;» = 1.2
is depicted and the optimum span ratio Sr., is determined as
Stope =0.64 which gives the maximum weighted membership
value. The optimum span ratios Sr, for every discrete safety
parameter fy (=1,..,5) can be obtained by the same process.
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6.3 Determunation of the global fuzzy optimum safety
parameter f;, o

By arranging the safety parameter and corresponding
values of max (¥4 +W 1), we can introduce the relationship

between maximum membership valves 4, (S7, . f,) and
the safety parameter f;; (7=1...,5). The relationship introduced 1is
shown in Fig 1]l and the global optimum safety parameter

S 15 determined as ¥ =1.57 that has the maximum value

M nthe o, (f) (G=1,....5) and £ relationship as shown
mFig 11.

6.4 Determination of the final global optimum values of S¥, H,
Xsup and me

The global optimum span ratio Sr%, =0.65 for f2 =1.57 can

5,0pt
be determined using already established relationship between
weighted maximum membership values and span ratio for two

discrete f; ; which are nearest to f%. . The global optimum

s,0pt*

girder height H%,,=7.28m for Sr% and f2

§,0pt

can be
determined using relationship between maximum values and
the girder height for two discrete set of f;; and Sr; which are
nearestto f*  and Srf

5,0pt opt *
The exact global optimum values of X, and X, for S7%,,

H:! and f% . XE

s,0pl > sup

and Xf, are determined by the

suboptimization processes of the superstructure and the
substructure  described in 4. The global optimum values

X5,=P, P, e ' and X%, = [A, P, P, D, SI' are,
respectively, given in Table 1,2 and 3.

[ Wewa=06:04, f,=12 |

g 072 7.

E .

g 0.68 - :

G

(=] .

Q

—§ 0.64 4 | 87, =0.64

>‘: .

S 060 : o \ : :

o
o

0.6 0.7 0.8 0.9
Span ratio Sr

Fig. 10 Determination of optimum Sr,, for £=1.2

1

o
o)

Max. value of membership

06 L] L ¥ T

1.0 1.2 1.4 1.6 1.8
Safety parameter £,

Fig. 11 Determination of the global optimum £

Table. 1. Global optimum values of P,, P, e and t of superstructure

P, Pi(kN) e(m) t
¢N) | Py | PL | P e e 2] (m)

18828 | 332 | 8562 | 2828 | 146 | 042 | 1.71 0.52

Table. 2. Global optimum values of 4;, A, and 4; of RC pier

Segment 1 Segment 2 Segment 3

As (emh) Ay (em®) As.(cmd
A0 A5 A7 | Al AR A7 L Al A8 47
Pl P4 | 439,43.0,763 | 76.3,73.4,76.4 | 92.6,88.3,92.6
P2, P3 | 587,542,587 | 132, 982,132 | 172,141, 172

P1 P4: Pier and foundation of end support P2 P3: Pier and foundation of outer support

Table. 3. Global optimum values of D, S, P,, and Py of RC footing

D (m) S(m) Px Py
Pl, P4 1.1 3.2 2 5
P2, P3 1.2 34 3 4

7. Conclusions

The following conclusions can be drawn from this study.

1. For the reason that all discrete combinations of design
conditions specified by the design parameter objectives and
common design variables are taken into account and the
corresponding  suboptimized data of all objectives are
evaluated in the determination process of the global
optimum solution, the proposed design method 1s
applicable to any types of convex and nonconvex
multicriteria optimization problems.

2. The proposed design method can easily involve the
fuzziness in the decision-making process, the designer's
preferences and design emphases by defining and
modifying the measure membership functions and relative
weights of each objective function appropriately on the
basis of the suboptimized data for each objective and the
relative emphases of the objectives. The proposed design
method, therefore, has a great flexibility for the decision-
making process with fuzziness.

3. By classifying the design variables into the set of common
design variables and the set of objective orlented design
variables considering the effects of each design variable to
all objective functions, the suboptimization process of
complex structural system for discrete set of common
design variables and determination process of the global
optimal solution can be camed out quite rationally and
systematically.

4. The measure membership function of each objective
function can be introduced rationally by comparing the
relative evaluation of exactly suboptinized data of each
objective function including design condition, general
consent, client consent, designer's preferences, design
emphases of the structural system and fuzziness of the
decision-making.

5. Introduction of the measure membership functions of each
objective function makes the relative evaluations of the
suboptimized data rationally and easily, and the
determination process of the global optimum solution quite
systematically.
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6. The values of membership fimctions of each objective for
all discrete combinations of common design variables and
design parameter objectives can be evaluated reasonably by
comparing the relative significance of the suboptimized
data referring to the corresponding measure membership
functions as datum.

. The weighted operator method can take into account easily
the relative significance of various characteristic objectives,
general consent, client consent, designer’s preferences and
design emphases of the structure.

. To sum up, the proposed multicriteria fuzzy optimum
design method can determine the global optimum solution
of a practical large scale structural system rationally,
systematically and efficiently considering the total
construction cost, the significance of the aesthetics and the
seismic safety of structural system, fuzziness involved in
the decision-making process, general and client consent,
designer's preferences, design emphases of structural
system.
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