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Hybrid/mixed Finite Element Analysis of Circular Plate Bending Based on
Reissner-Mindlin Theory
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The formulation of hybrid/mixed finite element method (HMFEM)

1s derived based on

Reissner—Mindlin theory. A non—axisymmetric plate bending element of HMFEM under polar
coordinate is presented. Some numerical results show that the presented method is valid for circular
plate bending problem. The comparisons of sclutions demonstrate that HMFEM greatly improves the
precision of solutions compared to that of displacement finite element method (DFEM). The presented
method may be applied to solve moderately thick/thin circular plate bending problems under all applied

load conditions.
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1.Introduction

The bending of circular plates is of great interest to
the engineering field. Such plate systems can be found
in many engineering applications, ranging from more
conventional civil engineering and  mechanical
engineering to aerospace engineering. Most research in
the field of plate bending was based on DFEM.
However, it is difficult for DFEM to achieve satisfied
solutions, even if reduced integration technique is used
in the analyses of plate and shell, It is well known that
solutions of plate and shell analyses were greatly
improved since hybrid finite element method, which is
the initial version of HMFEM, was presented by
Professor Pian - of Massachusetts Institute of
Technology in 1964 ''! | During the last thirty years,
HMFEM has been well developed, and a good historical
survey of HMFEM has been given by Professor Pian in
1996 "2’ . Based on papers published regarding the
plate bending problems of HMFEM, the authors
developed a new HMFEM model based on
Reissner—Mindlin plate theory of plate bending '°*! .
Although the bending of circular plates under
rectangular Cartesian coordinate system has been
substantially  studied, there have been . few
investigations on circular plate under polar coordinate
system with non—symmetry loads. This is because the
problems of polar coordinate system are often changed
into a rectangular Cartesian system to solve their
solutions. More errors in this case have often been
made and ignored because of the approximation of
solution domain, as shown in Fig.1, so a high amount of
elements are necessary in order to achieve satisfactory
solutions.

This. paper is concerned with an analysis of the
moderately thick/thin circular plate bending in polar
coordinate. Non—symmetric load is considered.

Fig.1 Approximation of solution domain under Cartesian
coordinate system

Extending the study by Duan et al.(1995) '*? , in this
paper, the formulation of HMFEM for plate under the
polar coordinate system is derived based on the
Reissner—Mindlin plate theory '°~ ¢! . Hybrid/mixed
finite element under polar coordinate system is given.
Numerical calculations are carried out to investigate the
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effectiveness of the presented method. The bending
behavior of moderately thick/thin plate is investigated
and numerical results for plate bending are compared
with theoretical solutions and the other numerical
methaods.

2. Theoretical Formulation

Using the geometric mapping relations, as follows:
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in which (r, 8), (§ n) is polar coordinate, local
Cartesian coordinate, respectively, two elements under
different plane coordinate system can transform each
other, as shown in Fig.2.
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(b) Polar coordinate system

Fig.2 Coordinate system of element

For the bending analysis of Reissner—Mindlin plate
with uniform thickness, the governing differential
equation in terms of displacement under polar
coordinate is given, as follows.
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where w is the out—of—plane displacement, » is the

load on the plate surface, E, ¢ , v is Young’s modulus,
the thickness of the plate and Poisson’s ratio,

with
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indicate  Reissner theory and Mindlin theory,
respectively.

Let displacement #, stress 0, and strain & under
polar coordinate system, as follows:
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in which @, and @e are rotation displacements about
polar coordinate # and O, respectively, Ye and Y.
are average shear strains, M,, Mo and M,.e are the
bending and twisting moments, @ and € are the

transverse shear forces, & and & are the bending
strain and the transverse shear strain, respectively.
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Substituting equations (3) into the following variational
function of HMFEM '7!

nR=Z, {fm[— -;-UTSa—foT(Du)] an-
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where ¢, £,, S, S., T and F are element
numbers, the domain of the element e, elastic
compliance matrix, stress boundary, surface force on
S and body force on element ¢ , respectively.

we obtain variational function of HMFEM for plate
bending, as follows:

1
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where

1 —-v 0
12 24(1+v)| 1 0
S;=E; —v 1 0 , S’=__Et 01
0 0 2(1+v)

In equation (3), displacement # is interpolated in
terms of nodal displacement A, bending and twisting

moment, transverse shear force are expanded in terms
of parameters §, as follows,

u=N.1 , M=Pfﬂ ’ Q=Ps ﬂ (6)

in which N , P are interpolation function, and function
matrix, respectively.

6= {ﬁn ﬁz, ﬂs, casy ﬂu} s
A= {Wb Wy, Qa, Wz Wray Qo2 ooy Way, Yoy lpm}

Equation (6) is substituted into (5), function 7zz
written as,

can be

m= A~ BB, GG, A= B H, B+TGA~

WA}

where W is equal effective nodal force, i.e.,

wo= [ NTas- [ NFag,

the bending and transverse shear parts of the flexibility
matrix H and the bending and transverse shear parts
of the leverage matrix G are defined respectively by:

H= LP,TS,P, a0, H= LP,T S.P, d9,

6= [ Frowaa, e [ powi

The stationary condition of 7z yields that

~HpB+GA=0
B @

Since H is a positive definite matrix and H™
exists, we solve simultaneous matrix equations (7) and
obtain the following equilibrium equation expressed by
element stiffness matrix KY=G"H'G .

K(c)l = W(c) (8)

3.Numerical Analyses

Based on the formulation of HMFEM described in
the previous section, numerical calculations are made
for moderately thick/thin circular plates. In most
published  researches '®*~'°?, a  uniformly
distributed load over the whole surface or concentrated
load at the center of the plate were considered.
However, in this study non—axisymmetric loads were
analyzed. On the other hand, circular plate bending
problem under the uniform tension load in radial
direction along the outer boundary and distributed
vertical load is carried out, as well.

3.1 Circular plate under partially distributed load

Circular plate subjected to a uniform load ¢ of
radius "R ", thickness "f " and clamped in the inner
edge (@=R/3) and in the outer boundary is
considered, as shown in Fig.3. Fig.4 shows the uniform
division of element for model in the direction of
circumference and radius alternately, " X " indicates
the distribution of a uniform load.

A
A
.

TN

e

Fig.4 Element division of model

Fig.5 shows the distribution of displacement along
radius for the circular plate of #/R=0.01 and results
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compared with theoretical solutions '' '’ . Numerical
results were obtained for adequate convergence by 64
element numbers, as shown in Fig.6. Comparing the
results of HMFEM and DFEM shown in Fig.5 and
Fig.6 for partial annulus shape element, we conclude
that the solutions of the.presented method HMFEM(r)
(HMFEM under polar coordinate system) are quite
close to the classical thin plate solutions and can
achieve higher accuracy and faster convergence than
DFEM '*! (under Cartesian coordinate system and
polar coordinate system, respectively) and HMFEM
under Cartesian coordinate system (HMFEM(C)) '*?! .

In this paper, DFEM expresses displacement finite
element method in which a quadrilateral isoparametric
displacement finite element and reduced integration
technology are used.
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Fig.5 Distribution of displacement
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Fig.6 Comparison of solution convergence

Moment M, is shown in Fig.7, which indicates that
the stress of inner boundary along #=a& is large and
the stress of outer boundary along #=R is
comparatively small. It can be see that the results of
HMFEM corresponding to #R=0.01 are in close
agreement with that of classical thin plate theory. The
obvious differences of solutions by DFEM and classical
thin plate theory are shown although the affection of
the transverse shear deformation is very small when
the plate of ¥R= 0.01 is considered.

HMFEM

(1) Inner boundary
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(2) Outer boundary
Pig.7 Distribution of bending moment M,

Table 1 shows the results of the presented method
and DFEM in the thin plate limit which the ratio of the
plate thickness { and the radius of circular plate R
becomes very small. The presented method gives the
stable solutions; however, DFEM has ‘"locking"
phenomenon. The solutions of plate bending based on
Reissner—Mindlin theory different from those of
classical thin plate theory when #/R is 0.1, because
transverse shear deformation is considered.

Table 1 Solutions in thin plate limit

W,M,xg—n? (M,)mxigz
qa 9@

/R | HMFEM | DFEM |HMFEM | DFEM
107 | 1.0588 0.8937 12.2542 | 8.4537
Reference solution: 1.0643
‘107 | 0.9792 0.7685 12.2454 | 8.7518
107 | 0.9761 0.6099 1122454 | 7.8490
10~ | 0.9761 0.5092 |12.2454 |5.3222
107° 1 0.9761 0.5065 12.2454 | 5.2070
107° | 0.9761 0.5065 12.2454 | 5.2058
107 | 0.9761 0.5065 122454 | 5.0077
107° | 0.9761 — 12.2454 -
Reference solution: 0.988" 12.2554

' 3.2 Circular plate with inner edge clamped and the
outer edge clamped or free

Consider the case of circular plates of clamped along
the inner hole and free or clamped along the outer
boundary under a concentrated force at distance
r=2R/3from the center of the plate, as shown in Fig.8.

Concentrated load P

L

;é > 4
_/é @ Free

@ Clamped supported

Q2
Clamped supported

Fig.8 Circular plate under a concentrated load

Fig.9 shows the distributions of moment where the
inner edge is clamped and the outer edge is free ( O ).
Comparison of the computational results of HMFEM
and DFEM indicate that the distribution is symmetrical
along 6=0° and 6=180°  and the distributions of
displacement, rotation displacements ¥., @ws¢ under
clamped condition ( @ ) for DFEM, HMFEM and
theoretical solution, are shown in Fig.10 and Fig.11,
respectively. The results obtained from the presented
method are closer to classical thin plate solutions than
is DFEM.

0.2}
0.1

Moment Mr
=)
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Fig.9 Distribution of moment under free edge
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Fig.10 Distribution of displacement under clamped
supported condition
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Fig.11 Distribution of rotation displacements (y,, p.)
under clamped condition

Table 2 shows the results in thin plate limit under
the outer edge clamped condition. The results of
HMFEM have stability; however, DFEM has the same
"locking" phenomenon as the analyses of section 3.2

.show.
Table 2 Solutions in thin plate limit
0.01XW,...D/Pa (M ).ol P
/R |HMFEM | DFEM |HMFEM | DFEM
10~ | 2.77832 | 2.89124 | —0.3945 | —(0.3398
107 | 2.764608 | 2.888489 | —0.3920 | —0.3368
107 | 2.400842 | 2.871443 | —0.3559 | —0.3363
107 | 2.393459 | 2.827084 | —0.3554 | —0.3373
107° | 2.385106 | 2.805984 | —0.3553 | —0.3366
107 | 2.384202 | 2.805127 | —0.3553 | —0.3366
1077 | 2.308473 | 2.834763 | —0.3587 | —0.3389
107° | 1.471999 | 0.034175 | —0.2616 | —0.0938

3.3 Circular plate
uniform tension
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under uniform lateral load and

The circular plate, which was subjected to a uniform
tension N  and a distributed uniform load g in
vertical plane together simply supported in the outer
boundary, is shown in Fig.12. Fig.13 gives a element
division of the above model.



Fig.12 Circular plate under distributed load and uniform
tension (#/R=0.01)

Fig.13 Element division of model

The theoretical solutions are utilized to compare
with the results of the presented analysis and the
displacement finite element solution. Fig.14 and Fig.15
describe the distribution of displacement in the
direction of radius for 6=0" under clamped and
simply supported, respectively. The displacement W
reaches a maximum at #=6=0 . The numerical results
show that the results by the presented method yields a
higher precise than those by DFEM even a few of
element numbers are used. D , v which are shown in
Fig.14 and Fig.15 are the bending rigidity of the plate
and Poisson’s ratip, respectively.

4. Conclusions

HMFEM of circular plate bending under polar
coordinate system has been proposed in this paper. The
formulation of HMFEM is derived based on
Reissner —Mindlin plate theory. The convergence of

... Classical thin plate solution:
15.*‘:" Wmax= K /(1+a)
= K =qR4/64D, @ =NR2/14.68D)
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Fig.14 Comparison of maximum displacement under
clamped condition

_.Classical thin plate solution:
- Wmax= K /(1+ Q)
K =qR4(5+ Vv )/64D(1+ V),
a=NR2/4.20D
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Fig.15 Comparison of maximum displacement under
simply supported condition

displacement and moments versus the element

numbers for moderately thick plate is depicted. It is
worth noting that the aspect ratio of plate does not
influence the convergence of the results for the
presented method. Therefore, HMFEM seems to have
a wide applicability to the bending problem of
moderately thick plate. By obtaining a model of plate
for HMFEM, the bending behaviour of circular plates
with non—axisymmetric loads is analyzed. In the
preceding examples it is seen that the results of the
presented method for both the displacement and the
moment are in agreement with classical thin plate
solutions in thin plate limit. Therefore, the presented
method is a competitive method in terms of efficiency,
reliability, accuracy and economy in such applications of
circular plate.
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