Journal of Structural Engineering Vol.43A (March 1997)

JSCE

Nominal Strength Size Effect of Brittle
Materials Based on Micromechanics

Guo-ping YANG' and Hiroshi HIKOSAKA?

1) Ph.D., Guest researcher from Tsinghua University, China; Dept. of Civil Eng., Kyushu University, Fukuoka
2) Dr. Eng., Professor, Dept. of Civil Eng., Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812, Japan

Abstract

The nominal strength size effects of brittle materials in both tension and
compression are studied in micromechanics framework, considering microcrack
interaction, propagation and coalescence in finite sized specimens. Two
numerical micromechanics models are proposed to study the coupling between
microcracks and finite sized boundary. Adoption of these two models depends on
the balance between more realistic curved crack propagation trajectories of only
several cracks and simplified straight propagation paths of many microcracks. It
is verified that the usual Size Effects with -1/2 slope in bilogarithmic form are
only applicable to geometrically similar cases. In geometrically dissimilar cases,
however, the size effects present very different features in both tension and

compression.
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1. Introduction

The nominal strength size effect of the brittle materials
is a special term to mean the phenomenon that the strength
of a structure decreases as the structural size increases.
For a long time, it has been explained statistically as the
assumption that a weaker material point is more likely to
occur in a larger structure. For example, many

explanations were based on the Weibull weakest-link: -

theory.  In 1984, Bazant connected reasonably the size
effect of concrete structure with energy release during the
crack propagation”, It has been evidenced from extensive
experiments that the failure mechanism of brittle materials
is dependent on the crack propagation behavior in both
tensile and compressive loading conditions. The pre-
existing microimperfections in brittle materials play a very
important role in nominal strength size effects.

Since the brittle materials is very crack-sensitive, many
researchers attributed the macro-mechanical properties of
brittle materials to the micro-structures and micro-
mechanism of crack behavior2'4). Great effort has been
made for considering the crack interaction and
propagation in brittle materials®®. But there were rarely
considerations ~of finite size boundary influence in
previous work, and what is more, the usual size effects are
referred to the geometrically similar specimens, which
means. that the ratio of crack length to specimen size is
kept proportional in cracking problems, as the Bazant’s
hypothesis shown in Fig.1. Howevet, this is rather far

from the practical engineering situations where the .

proportional ratio does not always hold.

a
A A A
- Fig.1 Bazant’s hypothesis (a/d=constant).

In real situations, strength size effect is closely
connected with the coupling between crack behavior and
the finite sized boundary influences. Although many

studies have been done for geometrically similar cases,

the fracture characteristics and the strength size effects are
not completely understood in the complicated case where
geometrical dissimilarity exists. ;

In the present paper, the nominal strength size effects
of brittle materials in tension and compression are studied
in the micromechanics framework, considering the
microcrack interaction, propagation and coalescence in
finite sized specimens with both geometrically similar and
dissimilar cases. Two numerical micromechanics models
are: proposed to study the coupling between microcracks
behavior and finite sized boundary influence. In the first
model, several microcracks are simulated with the
displacement discontinuities boundary elements with more
realistic curved propagation trajectories; while in the
second model the behavior of a large number of
microcracks is represented by the closed form solutions
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with simplified propagation paths. The coefficients of
crack interaction and boundary influence are obtained in
the unified form of algebraic expressions. Realistic curved
or simplified straight branching cracks are simulated
through a step by step propagation increment. With
different configurations of specimen sizes and crack
lengths, the influences of specimen size and crack length
on the fracture strength of the brittle materials in both
tensile and compressive cases are studied. It is shown
from the results that the usual Size Effects with -1/2 slope
in bilogarithmic form are only applicable to the
geometrically similar cases, while in the case geometrical
similarity does not hold, size effects take very different
mechanical features. The results explain reasonably why
the size effects prevail in the brittle materials containing
many initial imperfections.

2. Brief Description of the Micromechanics Models

To simulate the microcrack behavior, the crack
representation should be properly considered. The choice
depends on the number of cracks to be simulated in the
specimen. In the case of only several cracks, displacement
discontinuity elements are adopted to trace the more
realistic curved crack propagating paths, the degrees of
freedom increase with the progressive cracking process.
When a large number of cracks are to be simulated, the
classical closed form crack solutions are used to simplify
the cracking trajectories as straight approximations. As for
the finite sized boundary, it is suitably represented with
the Fictitious Stress elements.

2.1 Displacement Discontinuity Crack Representation

In geometrical terms, cracks are considered to be
discontinuities in an extending field. The Displacement
Discontinuity Method (DDM) is based on the assumption
that stress and displacement fields are connected with
displacement discontinuity (DD) over the crack's two
surfaces. Based on the analytical solution of a
displacement discontinuity in elastic field, a crack is
subdivided into a number of DD elements. The resultant
field summing up all elements’ contributions gives out
numerical solution satisfying the given boundary
conditions. By subdividing each crack into M number of
DD elements, the elemental DDs are defined with respect
to local tangential and normal coordinates s and n as D;
and D,. The stress and displacement fields in local
coordinates will be obtained from the contributions of
these local DD elements”:

M M

0.()=Y A, GND,(N+X A, G HD, () 13
u Z

0,()= A, ND,(N+X AC. NP, () (D)
j=1 j=1
M M

u, (D) = X, B, (i, DD, (N +2, B N, 1)

j=1

M . M
u, (@)=Y B, (i, )D, () +3,B,. (i, HD,()) (1d)

j=1 j=1

in which Ax;(i,j), Auli), By(ij), Bu(ij), etc. are the
influence coefficients of stresses or displacements at

location j on those at location i, then the simple coordinate
transformation will give out the global effects of these
local discontinuities. In the case of several microcracks in
specimen, above equations also give out the mutual
influences between different cracks.

2.2 Crack Representation with Closed Form Crack
Solutions

If many pre-existing microcracks are to be considered,
it is convenient to adopt the fictitious stress concept for
the computation of the Stress Intensity Factors (SIFs) with
interacting cracks. The fictitious stresses are assumed as
the on-site stresses acting on the microcrack surfaces and
producing the same SIFs as those from remote boundary
stresses. For the stress distribution around a crack
whose surfaces are subjected to constant normal and

-shear stresses, Sneddon. and Lowengrub obtained closed

form solutions'®

to simulate the interacting microcracks

Two algorithms are herein adopted for computing the
SIFs of interacting microcracks with and without
propagation, respectively. The exact solutions from
Sneddon and Lowengrub are used for primitive
microcracks (not propagated), which allows us to get
better estimations for the crack propagation initiation and
branching directions, each crack has two degrees of
freedom. After the crack has propagated, the approximate
K-dominant stress field, commonly used in classical
fracture mechanics, is adopted for the computation of the
stresses generated by the branching crack tips, six degrees
of freedom are adopted to model the crack branching
states.

If the primitive crack has propagated with two
branching cracks, as shown in Fig.2:

. These exact solutions have been used
8,11-12)

Fig.2 Primitive Crack with two branching tips.

the fictitious stresses ¢ and 7 on the surfaces of the
primitive crack, generated by the applied boundary
stresses and crack interaction, will result in an opening
force O and a sliding force S on the branching cracks®:
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a,(~tsin@; +o cosf,) , for >0

0= . (2a)
a,(-sin0; +0'/1‘sm9,.}.‘) , for 0<0

S =a,(t +0A)cosb, (2b)
where A is the friction coefficient between the two crack
surfaces in compression. When the normal stress is
tensile, the frictional term in the preceding equations is
absent.

The SIFs at the crack tips are evaluated from

(0]

= N (3a)
K, r_ﬂ'bi +0, ;
K,,=——S +0 /7, (3b)

T

where b, is the length of the branching crack, o , and C,
are the fictitious normal and shearing stresses on b, .

If o, is tensile, the propagation length b, should be
determined from

a,(—tsin@,; +0 cos6;)
b,

i

+0,7h, =K, ®

If the major stress is compressive, the fictitious normal
stress on primitive crack is negative in most cases,

_Ja +0A)cos,; for >0 (5a)
" la(t-0A)cosh, ,  for T<0
O = a,(—sin, + 0A| sinf, .(5b)

If the fictitious normal stress on branching crack is
also negative, then from

a,(—tsinb; +0'|sz;n9,-j D _K (6)
- IC
b,

it can be seen that the propagation of the branching crack
is stable, so the length of the branching crack can be
obtained step by step with the increase of the applied
external stresses on the specimen.

In the case of M microcracks in the specimen, the
interaction between cracks can be determined from

M
o, =—-o"" —Z[R;,j" .0, +RY 'rk] (7a)
k=i
M
1, =—1" Y[R -6, +Ry-7,] (D)
k#i

where O, ,7; arethe fictitious normal and shear stresses

on crack I, RZ°,RS" .. are influence coefficients

representing the interaction of crack & on crack i.
Eqs.(7) represent 2M linear relations for solving 2M
unknown fictitious stresses, it will be extended to 6M to
represent the different crack configurations during
propagating process.

2.3 Finite Sized Specimen with Interacting Cracks

To take account of the influence of finite sized
boundary, the Fictitious Stress Method (FSM) is
introduced. FSM is based on the exact solution of a point
force acting on an infinite plane”. A fictitious stress is
assumed to act on the discrete boundary element, which is
called Stress Discontinuity (SD) since there exists a stress
jump on both sides of the element. Over each element, the
stress discontinuity is assumed to vary according to a
given mode (constant; linear, etc.), the normal and shear
stresses generated by N discrete SD elements are

N N
o, (i)=Y C,0,)p, N+, C,G0)p, ) (82)
! j=1 j=1
0,0 =Y C.li.)p,()+ Y, Colis NP, () (8b)
j=t Jj=1

where pj) and p,j) aré the unknown normal and
tangential Stress Discontinuities at the mid-point of the
boundary elements, C.(i,j), Cu(ij), etc. are the influence
coefficients of stresses at point j on those at point .

The FSM formulation is very similar to the former
formulations in subsections 2.1 and 2.2, so it can be
combined with the former procedures. In the case DD
element is used, the external boundary may be divided
into N Stress Discontinuity elements as shown in Fig.3,
which, with M internal DD elements representing the
inner cracks, provides the following 2N+2M algebraic
equationsu'm:

N SD-elements for arbitrary boundary

P ,

M DD-elements for cracks

Fig.3 Boundary and crack representation.

N N
0(i)=Y Coli,j)p(j)+ 2, Colis i )pa( )+
j=1 Jj=1

(9a)

j=1

+Y, Aﬁ(i,j)Ds(mglAm(i,j)D,,(j)
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N N
0,(1)= 3, Culb jIP( 1)+ 2 Conlh, (1) +

M
+Y A,(ij)
j=1

M
D,,(j)+ X, Au(, D (J) O

In the case many random cracks present in a finite sized
body and the closed form crack solutions are adopted, the
external boundary can be divided into N Stress
Discontinuity elements. These N elements, together with
M internal microcracks, give out the following 2N+6M
algebraic equations to solve the coupling effects:

N

o, =-3cprivcys -3 3 (R o, +rgw] (109
=1 ki 1=l
N

7; =—2[q‘1{ppj+cax'xsj ]_22 [R;‘I’.o'u +Ry T ] (100)
j=1 ki 1=1

which enables us to determine 2N Stress Discontinuity
unknowns and 6M fictitious stresses for M microcracks.

After getting the stress and displacement fields near the
crack tips, the related SIFs can be evaluated considering
different propagation configurations in finite sized
specimen.

1t is necessary to set up the criterion for checking the

intersection locations and global failure of the specimen.
During crack propagation, some branching cracks may
intersect with other cracks, and some minor cracks will
stop propagating (Crack Arrest). A coalescence matrix is
adopted to identify the independent coalescence
clusters'. If an independent crack coalescence cluster
intersects with two terminal boundary elements, the
specimen is assumed at its ultimate load state.

3. Size Effects of Brittle Materials

To the authors’ knowledge, almost all previous work
concerned with size effects of brittle materials dealt with
geometrically similar specimen. In cracking problems, the
assumption of geometrically similar specimen means the
same ratio of the crack to specimen scaling if only several
major cracks presented, as shown in Fig.1. In this case the
crack length effect and specimen size effect are the same
since the scalings of the crack and specimen are kept
proportional. But how about the size effects in the cases
without geometrical similarity ? This is specious if the
conclusion is simply drawn from the SIFs computations of
the classical fracture mechanics.

In the classical Griffith fracture theory in an infinite
plate, the crack starts propagating immediately when the
SIFs achieve the fracture toughness of the material. The
propagation is assumed unstable so the failure stress and
crack length were usually connected through the stress
singularity of -1/2 in the bilogarithmic form (from
o =K, ,(ma)""? ). However, when the problem is ﬁniter
sized and the crack length and specimen size are not
exactly geometrically similar, the relation between failure
stress and crack length presents different characteristics.

The strength size effects in the geometrically similar

cases with several major cracks and many randomly
distributed cracks, and the geometrically dissimilar cases
of fixed specimen size containing varying crack lengths
are studied in the following subsections.

3.1 Geometrically Similar Case with Many Random
Microcracks

The crack density and the possible maximum crack
size are the most important microstructure parameters of
crack distribution in brittle materials. Taking concrete as
example, the crack density is connected with many
factors such as the cement type, mixture properties,
process method and so on. The possible maximum crack
size, on the other hand, is usually determined by the
maximum aggregate size.

The first group of examples studied in this paper are
geometrically similar with many randomly distributed
microcracks., This is realized by the equal crack density
assumptions in different sized specimens, while the
possible maximum crack size is kept the same considering
the real situations. Four different sized specimens are
computed. The square specimen sides are 50 mm, 75 mm,
100 mm and 150 mm, respectively. The material
parameters are assumed as: Young’s modulus E=30000

N/mmz, Poisson’s ratio y=(3,
K =20 N / mm** . Independent uniform distributions

for the position and orientation of microcracks in the
specimen are adopted. It should be noted that the different
combinations of crack position and orientation will give
out different internal microstructures. In the examples, 10
samples for each combination of position and orientation
are computed, and the average loads are used as
characteristic values for size effects.

To keep the crack density unchanged, the numbers of
the randomly distributed microcracks are taken as 20, 45,
80 and 180, respectively, for these four different specimen
sizes. The possible maximum crack size is assumed to be
5 mm in each case.

The crack sizes are assumed with uniform distribution
within the range between 0 and 5 mm. The average failure
loads in uniaxial tension are 4.550 N/mm> , 3.150
N/mm?® | 2.800 N/mm® and 2.625 N/mm® , respectively.
The primitive crack distribution in the 100 mm specimen
is shown in Fig.4(a), and the crack pattern at failure stage

is shown in Fig.4(b). The linear regression relation in
bilogarithmic form is

Fracture Toughness

Log(c)=3372—0495Log(s) (1)
in which ¢ is the failure stress ( in N/mm* ), and s is the

specimen side ( in mm). The slope is very near the
strength size effect of -1/2 in the ideal brittle materials
from classical linear fracture mechanics.
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(b) Crack pattern at failure

Fig.4 Crack propagation in tension.

With the same specimen parameters, the uniaxial
compressive failure loads are —25.780 N/mm’ -16.000

N/mn. ~15.110 N/mm® and —~12.500 N/mm? — respe-
ctively. The linear regression relation is '
Log(0)=5624—-0629Log(s) (12)

The primitive microcrack distribution with specimen
size 100 mm in compression is shown in Fig.5(a), whereas
the final crack pattern is shown in Fig.5(b). The slope of -
0.629 is a little larger than -0.495 in Eq.(11), which means
that the size effect in compression is a little more severe

compared with the case in tension, but without significant
difference.
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(a) Primitive crack distribution in compression.
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(b) Crack pattern at failure

Fig.5 Specimen in compression.

3.2 Geometrically Similar Specimens in Tension with
only one Major Crack

A skew crack of 45° in tensile mixed mode fracture is
computed with DD representation of the cracks. The
Young's “modulus is assumed as E=30,000 N/mm?,
Poisson ratio v=0.3, and the Fracture Toughness
Kic=100 N/mm™”. The varied parameters are crack length
and the specimen size as shown in detail in Table 1.
Typical failure crack pattern is shown in Fig.6, the
trajectories of the branching cracks are progressively
perpendicular to the major tensile stress. The computed
failure stresses are also grouped in Table 1.

From the failure stresses in Table 1, the influences of
the crack length, specimen size on the loading capacities
of the brittle material in mixed mode fracture can be
studied respectively.
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Table 1 Specimen Sizes, Crack Lengths and Failure Stresses

Specimen size (mm) 400 200 100
Half-crack length (mm) 223 111.50 55.75
Failure stress (N/mm?) 1.6 2.2 3.0
Half-crack length (mm) 148.66 74.33 37.16
Failure stress (N/mm®) 3.2 3.2 6.4
Half-crack length (mm) 111.50 55.75 27.87
Failure stress (N/mm?) 4.8 6.8 9.2
Half-crack length (mm) 74.33 37.16 18.58
Failure stress (Wmm?) 6.8 9.6 13.2
Log(0)=18148 - 05000Log(s) (a/s=103716) (13b)
Log(c) =19058 — 0.4693Log(s) (a/s=02787) (13¢)
AADINDIADIADID DA Log(c) = 20795-04785Log(s) (a/s=101858) (13d)

I

VI ¥ v Vv vV VJ
(a) s=400, a=74.33

DM

S

NANANANAN

(b) =200, a=37.14

Fig.6 Typical failure crack patterns in tension.

First, the cases with proportional sizes of crack/specimen
(geometrically similar) are checked. When the specimen
sizes are taken as 100, 200 and 400 mm, four groups of
data are available. The crack/specimen scaling ratios are
0.1858, 0.2787, 0.3716 and 0.5575, respectively. If we
make linear regression of the failure stresses and varied
specimen sizes in the bilogarithmic form, the following
expressions can be obtained:

Log(o) = 13847 — 04534Log(s) (a/s=05575) (13a)

The variations of the failure stresses with specimen
size and crack length in geometrically similar cases are
shown in Fig.7. All of the slopes are approximately near
the value of -1/2, these values are again just the classical
Griffith fracture mechanics stress singularity like the case
of in section 3.1.

B 25=03716
X a/s=0.1858

@ s=05575

A 2/s=02787

Log (Failure stress)

2.30

Log (Specimen size)

Fig.7 Size effects with geometrical similarity.

3.3 Tensile Crack Length Effects without Geome-
trical Similarity

When the crack length effect is checked in the case of
fixed specimen size with varying crack lengths, as shown
in Fig.8, the linear regressive expressions become:

Log(o) = 28667 —1.3430Log(a) (s =100mm)
(14a)

Log(c) =31200-1.3327Log(a) (s =200mm)
(14b)

Log(o) = 33468 —1.3229 Log(a) (s = 400mm)
(14¢)

The slopes in above equations are about -1.33, not the
-1/2 in the cases of the same crack/specimen ratios. At
first glance it seems a little astonishing, however, the
result analysis shows that the difference is mainly
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attributed to the boundary influences.
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Fig.8 Size effects of crack length
with geometrical dissimilarity.

This can be explained with an example by considering
the same length of cracks in different sizes of specimens.
If the finite sized boundary effects are neglected, the same
SIFs at the crack tips will be obtained for the same
external stress from the classical fracture mechanics.
Therefore, the two different sized specimens with same
crack length will have the same failure stress since the
unstable crack propagation will occur when the SIFs reach
the material fracture toughness. This is obviously not true
for practical cases because the boundary far from the
crack will exert higher resistance (constraint) on the crack
propagation.

In the condition that the two different sized specimens
contain the same length of cracks, the larger specimen will
have higher strength. The failure stresses of the larger
specimens with the same crack lengths are 50% ~ 127%
higher than those of smaller specimen sizes, contradicting
with the predictions of the same failure strengths from
classical fracture mechanics.

So it can be pointed out that the usual Size Effects with
-1/2 slope in bilogarithmic form are only applicable to the
geometrically similar cases.

3.4 Frictional Compressive Crack without Geome-
trical Similarity

When the specimen is subjected to compressive stress,
the friction on the crack’s surfaces is an important factor
that affects the strength of the brittle specimen. The
friction on the surfaces will exert resistance on the crack
propagation in compression. With the same material
parameters, the failure stresses of a square specimen of
400 mm sides, with varying crack lengths and Coulomb's
frictional angles, are computed. Typical failure crack
patterns in compression are shown in Fig.9, and the
computed failure stresses are grouped in Table 2.

The variations of the failure stresses with different crack
lengths are shown in Fig.10. The linear regre-ssions in
bilogarithmic form are
Log(c) = 4.4425-16627 Log(a)

Log(o) = 4781517624 Log(a)

(15a)
(15b)

(p=0%)
(p=166")

Log(c) = 44754 — 15427 Log(a) (@ =266°) (15¢)

Comparing the slopes in Egs.(15) and those in
Eqs.(14), it can be found that when the crack is in
compression, the influence of the crack length on the

failure stress is more severe than that with tensile stress.

VRV N RN NNV

A NI N N N N N N
(a) s=400, a=74.33

NV VRV RN

O N N e N N S
(b) s=400, a=148.66

Fig.9 Typical failure crack patterns in compression.
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Fig.10 Size effects with different crack
lengths in compression.
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Table 2. Failure Stresses with Varied Crack Lengths and Frictions

( Failure stresses in N/mm?, specimen size s= 400 mm )

Half-crack tengths (mm) 74.33 111.50 148.66 223.00
No friction -19 -12 -8 -3
Frictional angle 16.6° -28 -16 -10 -4
Frictional angle 25.6° -39 =20 -14 -7

4. Concluding Remarks

To understand the crack-sensitive failure mechanism of
brittle materials, the crack propagation processes of the
finite sized specimens are simulated with the help of two
micromechanics models. The coefficients representing
coupling between cracks and finite sized boundary are
obtained in the form of algebraic expressions, and the
curved propagating trajectories or simplified straight
branching paths are simulated through a stepwise
incremental process.

With geometrical similarity and dissimilarity, the
influences of crack length and specimen size on the
strength of brittle materials in both tension and frictional
compression are studied. It is found that in the cases of
geometrically similar specimens (with same crack to
specimen ratios), the failure stresses decrease with the
increase of the specimen size (or crack length) by a slope
of -1/2 in the bilogarithmic form. However, in cases of
geometrical dissimilarity, the size effects present different
features: usually they are more severe than those of
geometrically similar cases. It is therefore verified that the
usual Size Effect Laws connected with the slope -1/2 are
only applicable to the geometrically similar cases.

Since the geometrical similarity does not always hold
for the practical engineering cases, the applications of the
previous Size Effect Laws should be further studied
considering the real engineering situations.
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