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The accurate model of the constitutive relation of thin steel plate elements is necessary for the reliable

nonlinear analysis of columns sustaining highway bridges and so on. However, accurate prediction of

the hysteretic curve in conspicuously nonlinear domain is the difficult problem as well as the important
matter. The main purpose of this paper is to propose a prediction method of hysteretic behavior of thin

steel plate elements in more nonlinear strain. level from that in relatively linear strain level. In order

to achieve the prediction of the conspicuously nonlinear hysteresis, first, Nomentary Deformation

Modulus (MDM]) is defined in this paper. Then, it is discriminated by the Lyapunov spectrum whether
the time series of MDM behaves chaotically or not. If the behavior of the time series of MDM is

deterministic chaos, application of a prediction method of chaotic time series results in good prediction

accuracy, permitting the prediction of the hysteretic curve in the conspicuously nonlinear domain.
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1. Introduction

In order to grasp and predict the ultimate state of

a structure ' member, its nonlinear hysteretic behavior is -

important, which is found out of the constitutive relation
of material and the general load-displacement relation
considering the local instability !’: 2>, Recently design
methods proceed to the Limit State Design Method so
that a method of modelling which is simplified and capable
of precision is expected. So far, on various pieces of
nonlinear behavior, many experimental data and case studies
using finite element analysis of structural member and
element are accumulated. Consequently if an appropriate
modelling method is developed with aid of the accumulation
and is effectively applied to the numerical analysis, it is
convenient toward solving the problems to improve the
accuracy and the efficiency for the nonlinear analysis.
In order to achieve an appropriate hysteretic model
as described above, this paper is aimed at proposing a
prediction method of the constitutive relation of thin steel
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Fig. 1 Hysteretic Curve

plate elements, namely, flange plates under cyclic loading.
That is to say, the main objective in this paper is to
predict cyclic axial stress - strain relation of thin steel
plates in more nonlinear strain level from that in relatively
linear strain level. Herein, the axial stress and strain are
average values of the plates under repetitive compressive-
tensile loading in the axial direction.
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Fig. 4 Specimen Used for Experiment

of the proposing prediction method of hysteresis in
relatively conspicuous nonlinear domain®.

2. Experiment of Thin Steel Plates and Momentary
Deformation Modulus

A cyclic compressive-tensile experiment has been
conducted to obtain hysteretic data for verifying validity

Axial stress - strain relation, namely, a hysteretic
curve obtained by the compressive-tensile experiment on a
specimen is shown in Fig. 1. The loading is conducted in
the way of the displacement control as shown in Fig. 2.
As a response, the time series of stress shown in Fig. 3



Table 1 Design Measurements of Specimen

Table 3 Actual Measurements and Yield Points

PLATE CORNER THICKNESS LENGTH AREA CORNER LENGTH AREA Py
B (mm) T (mm) t (mm) L (mm) BXt(cd) r(mm) L(mm) BXt (i) (tonf)
78.0 20 23 3000 1077 26.62 2992 10.75 3737
Table 2 Actual Measurements of Specimen
PLATE 1 PLATE?2 PLATE3 PLATE4
Bi(mm) ti1(mm) Bi(mm) t2 (mm) B3 ( mm ) t3 (mm) B4( mm) t4(mm)
78.2 2321 75.8 2.247 77.0 2.402 752 2.256
has been obtained. The shape of the specimen is a round-
cornered box type as depicted in Fig. 4. The steel type.of 4 > N i
the specimen is SS400. It is noted that the compressive % i ]
Sl ” o = [ ]
side is regarded as that of positiveness and the tensile side g I ]
. . . . & 1
is considered as that of negativeness. Incidentally, an g . Rk .
‘ g ol . { | ]
average of four values measured at four corners of the 3 I ]
specimen is axial displacement. And the axial stress and g ) J
. . o
strain are nominal values. The four values measured at g L ]
<
four corners of the specimen are expected to be almost = i ;
. eg eqr ‘ ) -5 N el P A P
same. However, there may bg possibility - that ' the four o 2000 4000 6000 8000  110% 1210%
values are different -a little bit from each other. That is Time (s)
why the average of them is defined as axial displacement Fig. 5 Time Series of Momentary
Deformation Modulus

in this study. Besides, design measurements of the
specimen adopted for this compressive-tensile experiment
are tabulated in Table 1. :

In the displacement control, the average axial
displacement of the specimen is controlled. The controlled
displacement y is determined by

u+u,+u;+u,
u=

4 D

where u., u,, Uy, u, are axial displacement in
compressive - tensile direction and are measured at four
corners of the specimen. The sensitivity of measurement
is 500 micro/mm. The axial displacement, that is,
averaged values of the four values are output through a
bridge-terminal of the experimental system as voltage.

The relation between the nominal strain g and
controlled displacement is expressed by

E=—

I @

where [ is Iength of the specimen in the compressive -
tensile direction. On the other hand, stress is determined
from vertical load measured by a load cell inside the
actuator.

As can be seen from Tables 2 and 3, the specimen
used for obtaining the hysteretic data has unusually large
generalized width-thickness ratio. In practice, this kind of
plates are not used as the segments subjected to the
seismic load. However, in this study the principal
objective is to apply a pfediction method of chaotic time
series to the prediction of hysteretic curves of thin steel
plates. It is not the primary objective to investigate the
dynamic characteristics as the earthquake-resistant
segments of the plate elements. Hence, it may be said that
using data related to this specimen has a significance.

When the specimen is subjected to the repetitive



1r . —r
f l
O 8 Iy l i ! E
1L e
0.6 [yt u
VRN !
0.4 j _
0.2 |
iR i
0 i A L 1 ] 1 A KL ) L 1 ] —t) L
0 20 40 60 80 100
n
Fig. 6 Logistic Progression
1.4 [T T T
o 12 \\
2 .
2 1 ]
EoE :
0.8 [ A
g \ / N\ Ve
B 06}
= [ \ /
= 0.4 V
o2t LA

1 10 100 1000
~ .

Fig. 7 Lyapunov Spectrum for
Logistic Progression

load whose pattern is shown in Fig. 2 and the strain
amptlitude is small at the first stage, the bearing strength
increases stably on both the compressive and tensile sides
as depicted in Fig. 1. However, the local buckling occurs
as the deformation out of the plane develops when
subjected to the large compressive thrust and the
repetitive number of loading becomes large and the strain
amplitude is made greater.

For that reason, if the buckling did not occur, the
bearing strength would show the similar or same change
on both the compressive and tensile sides. :

Although the stresses in both the compressive and
tensile sides, in initial loading stage, grow on with
progress of the loading cycle, the peak of the strength in
the compressive side is attained earlier than that in the
tensile side. Afterwards, the strength in the compressive
side goes on reducing under the influence of the
deformation out of the plane and the local instability,
whereas the peak stress in the tensile side becomes larger
successively after the peak of the strength has been
attained in the compressive side, and in due time, the

Lyapunov exponent
RN

Fig. 8 Lyapunov Exponents for
Logistic Mapping

collapse comes into existence.

According to the experimental result shown in Fig. 1,
the peak points shift remarkably after the specimen has
been subjected to the considerably great tensile strain. But
it is not evident whether the great tensile strain causes the
remarkable shift of the peak points.” As another studies,
some -experiments are expected so as to investigate the
problem in detail.

A deformation modulus at each moment can be

determined from the hysteretic data of the constitutive

relation. The deformation modulus at each moment is
called "Nomentary Deformation Modulus" in- this paper.
The Momentary Deformation Modulus e, (f) is stiffness
of a specimen at each moment, which is defined as

1y = S+D —0()
=G+ ) — () &)

in which o(¢), &(t), o(t+1), & +1) are axial
stress and strain at points of time ¢ and 7+ ] respectively.

Fig. 5 shows a time series of the Momentary
Deformation Modulus which is determined from the
hysteretic data of the thin steel plates. This- time series is
thought to have important information of dynamic properties
of the thin steel plates. This time series whose behavior
looks apparently complicated is directly taken into
consideration, in this paper, for prediction of hysteretic
curves in more nonlinear domain.

In Fig. 5, the time series of stress and strain have
a little phase difference each other at many points of
time. That is why the time series of the Momentary
Deformation Modulus yields behavior of high frequency.
The more stiffness of the specimen subjected to large
strain is reduced, the more components of the negative
Momentary Deformation Modulus increase. Conversely,
increase of points of the minus Momentary Deformation
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Modulus physically means reduction of stiffness of the
specimen in the loading axial direction or occurrence of
buckling.

3. Discrimination of Chaos via Lyapunov Exponents

Here, we consider. the spectrum of Lyapunov
exponents, which has proven to be the most useful
dynamical diagnostic for chaotic systems® . Lyapunov
exponents are the average exponential rates of divergence
or convergence of nearby orbits in phase space.

In order to. find the Lyapunov exponents. from one-
dimensional data e 1(f), the data is first embedded into
a reconstructed multidimensional state space. Embedding
means that m - dimensional location vectors are formed at
each moment with the one-dimensional data as

E () ={e (t).e, (t+1)e,(1+21), e, (1+(m=-1)7)}
@

where 7 expresses a constant time delay. The Lyapunov
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Fig. 11 Lyapunov Spectrum for Momentary
Deformation Modulus

exponents are determined by definition:

1< : L'(t,)
x = n 5
tN - to k=1 L(tk—l) (J)

where N means the number of total steps and L(z,_))
E‘.-IIl(tk~l) and E (tk—l) on

is the distance between 2

nearby orbits at time f,_, in the (k —1)-th step; the

distance is expressed as

L(tk—l) = Eﬂll(tk—l) - EMl(tk—l) (6)
L'(z,) is the distance between E, (1) and E, (2,)
at time 7, in the k-th step; the distance is expressed by
similar equation to Eq. (6):

L) =, ,t)-E, )] O

In general, when the spectrum of Lyapunov exponents
converges into a positive real number, the system is
defined to be chaotic. Fig. 6 shows the evolution of the
logistic progression. The logistic progression is known to
be a typical chaotic progression, and produced by the
following formula > 9:

X, =ax,(1-x) ®)

where ¢ is a real coefficient, and deterministic: chaos is
produced by Eq. (8) when the following expression holds:

357£a<4 )

Eq. (8) expresses the relation between g -th term
and (n+1)-th term of a progression, namely, Eq. (8) is
a recurrence formula. By giving a value of coefficient g
and an initial value X,, Eq.(8) produces a progression,
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Fig. 12 Prediction of Logistic Progression

which is called the logistic progression.

In case of -Fig. 6, 4a is set to 4.0 and the initial
value X, is equal. to 0.2. p is a number of a datum in
a progression. Fig. 7 shows the spectrum of Lyapunov
exponents in case of this logistic progression. In this case,
the spectrum of the Lyapunov exponents converges into
0.693 (=In2). Hence, it is confirmed that the evolution
of the logistic progression is chaotic.

Fig. 8 depicts Lyapunov exponents for the logistic
Mapping. As shown in this figure, positive values of the
Lyapunov - exponents. are within the range of Eq. (9),
which means that Eq. (8) produces chaotic progression
under the condition on coefficient ¢, that is, Eq. (9).

On the other hand, we have found the Lyapunov
spectrum in also case of the harmonic sine wave shown in
Fig.9 so as to verify validity of the discrimination method
of chaos by Lyapunov exponents. As can be seen from
Fig. 10, the spectrum of Lyapunov exponents converges
into the negative number; it follows- that the behavior of
the sine wave is discriminated as not chaos.

Fig. 11 depicts the convergence of the Lyapunov
spectrum in case of using the Momentary Deformation
Modulus as the time series. The spectrum converges into
almost 0.0005. Accordingly, the evolution of the Momentary
Deformation Modulus behaves chaotically.

4. Prediction of Momentary Deformation Modulus and
Hysteretic Curve® > .79

The total number of the Momentary Deformation
Modulus determined from the hysteretic' data is 11633, In

this time series, almost the first half, that is, 6000 points

are assumed to be known quantities, and the evolution of
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Fig. 14 Prediction of Uniform Random Numbers

the latter time series of the Momentary Deformation
Modulus is' predicted by means of - the Local Fuzzy

Reconstruction Method which is one of prediction methods

~of a chaotic time series.

The following preshppositions are necessary for
appropriate prediction using the prediction method of a

- chaotic time series: - -

(1) The Data assumed to be known has nonlinear hysteretic
stress - strain relation at least. '

(2) The behavior of the time series of the Momentary
Deformation Modulus is deterministic chaos; If the behavior
is not deterministic chaos but random, short time prediction
1s impossible as well as long term prediction.

Hereafter, the following definition is used:

e, (1) present datum of the momentafy
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deformation modulus; the latter time
series of this modulus should be
predicted
e, (t +5s5) momentary deformation modulus after
§ steps from e (z ) location

E, (1)

vector which includes e, (z) in
its components
I_:;M(t: +s) location vector after s steps
from E (f); the vector has
e (r + s) as its components
e (D nearby vector in a local part
including an end point of E (1)
e (1+5) vector after § steps from e (1)
In the first stage of prediction, one dimensional
data such as the Momentary deformation modulus is
embedded into multidimensional state space. Embedding
is to make many location vectors expressed by Eq. (4)
whose components have a same time lag each other.

All of the known Momentary Deformation Modulus
determined from the experimental data of hysteresis are
embedded into a reconstructed multidimensional state space.
In the space, an orbit from E (f) to E (2 +5) is
inferred based on trajectories from e (7) to e, (7+ s).

Fuzzy reasoning is applied to inference of the orbit

from E () to E (¢ +s). When the evolution of the
time series of the Momentary Deformation Modulus follows
deterministic chaos, the trajectories from e (z) to
e, (t+ s) can be expressed by deterministic rules. The
rules are defined in terms of fuzzy inference rules.
. It E, (t) is input to the fuzzy inference rules,
E (t +s) is derived by the fuzzy reasoning and
accordingly e (2, + s) is obtained because E (7 + )
has e (r + s) as its component.

Fig. 12 shows a comparison between the logistic
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Fig. 16 Prediction of Hysteretic Curve

progression and ' the predicted result. In this case, the
correlation coefficient is 0.982. That is to say, the typical
chaotic progression can be predicted with very good
accuracy.

A comparison between the uniform random numbers
shown in Fig. 13 and the predicted result is shown in Fig,
14. The random numbers do not follow the deterministic
rules. That is why the correlation coefficient in this case
is -0.188. Hence, the indeterministic random numbers
whose behavior is not deterministic chaos can not be
predicted with good accuracy, that is in the same way as
other methods.

Fig. 15 shows the predicted result in case of the
Momentary Deformation Modulus. The correlation
coefficient is 0.679 in the predicted latter part of the time
series. If the Momentary Deformation Modulus is converted
to the constitutive relation, the prediction accuracy becomes
better, namely, the correlation coefficient results in 0.987.

From the analytical results described above, it may
be said that the more time series and progressions are the
deterministic chaos, the better they are accurately predicted
by the prediction method of a chaotic time series.

The constitutive relation is derived from converting
the predicted Momentary Deformation Modulus to the
hysteresis between stress and strain by the following
equations:

d(c/o-y) = eM(t)d(s/ey) (10)
d(o‘/O‘y) =e, (1, + s)d(s/ey) an
(e/e),, =(ele), +d(ele) (12)
(0'/0'y ). = (0'/0')_)M +d(0'/0'y) (13)



The experimental result and the predicted hysteretic curve
are compared in Fig. 16. The total experimental data of
hysteresis is 11654 points and almost the first half, namely,
6000 points have been assumed to be known, and the
hysteretic curve in more nonlinear strain level is predicted
as a result. In this case, the correlation coefficient in the
predicted part is 0.987 as described previously.

- 5. Concluding Remarks

When the progressions and the time series whose
behavior is discriminated as chaotic are embedded into a
reconstructed multidimensional phase space, the set of the
location vectors is obtained; the progressions and the time
series follow the deterministic rules. The dynamics of the
location vectors can be predicted by the fuzzy reasoning.
Consequently, the evolution of the progressions and the
time series are predicted with good accuracy; the typical
deterministic chaos series such as the logistic progression
can be predicted by the method with very good accuracy
and also the time series of the Momentary Deformation
Modulus of the thin steel plates can be predicted with
good agreement between the predicied time series and the
time series determined from the experimental data.

The conclusions are summarized as follows.

(1) Using the spectrum of Lyapunov exponents as the
diagnostic for chaotic systems results in chaos of the
Momentary Deformation Modulus of the thin steel plates.
(2) Application of the local fuzzy reconstruction method
as one of prediction methods of chaotic time series leads
to good accuracy in prediction of the evolution of the
progressions and the time series whose behavior is
deterministic chaos.

(3) The proposed method permits prediction of the
dynamical hysteretic behavior of the thin steel plates

from relatively linear strain level to more nonlinear strain
level.
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