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In the present paper, a reliable finite element procedure is developed to trace
the whole-range structural responses of the reinforced concrete piers. In the
computer code, a degenerate isoparametric curved shell element with layered
model is adopted to simulate the out-of-plane structural responses. An arc-length
algorithm combined with line search acceleration is employed to overcome the
numerical difficulties near failure stage, and some important parameters affecting
the performance of the algorithm are studied. With the proposed procedure, the
structural responses of the concrete piers, with and without steel jacket
retrofitting, are simulated up to softening stage. Based on the numerical
simulations, the efficiency of the different retrofitting means is also discussed.
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1. Introduction

It is of first importance to evaluate the ultimate
loading capacity of the concrete structures to be designed
or already existed, and further to assess the earthquake
resistance from the viewpoint of structural ductility
(energy absorption ability). Some existing concrete
structures are being stiffened since the big shock in
Hanshin-Awaji area in January 1995, and many
experimental investigations on steel jacket retrofitting of
concrete bridge piers have been done by the Ministry of
Construction, the Hanshin Expressway Public
Corporation ( noted as HEPC for short hereafter) and
other organizations. However, these experiments are very
expensive and unable to cover some other practical
engineering situations, reliable numerical simulation
therefore becomes an alternative. :

The dynamic analysis of concrete structures demands
the full-range response up to the softening stage. Finite
element method has recently become the most powerful
numerical tool in structural analysis through decades
development. But it is still very difficult to trace the full-
range responses owing to the numerical instability and
bifurcation near and post-failure stages. Near the
ultimate load, a highly nonlinear structural response is
usually encountered, stemming from concrete crushing
and reinforcement yielding. Load control algorithms will
inevitably fail to catch exactly the. limit load, so
many displacement control schemes have been proposed

to pass the failure point' ™.

Among the algorithms introduced into finite element
analysis to trace the equilibrium paths, the arc-length
method has given out some promising results™®.
Crisfield has done much successful work to improve the
effectiveness of the method in solving softening
problems. However, as pointed out by Crisfield” , severe
numerical difficulties have often been encountered when
the arc-length method is applied to concrete structures,
which usually leads to the abandoned solutions. A further
research on arc-length method is necessary to improve
the performance of the method, and most importantly, to
get reliable and stable solution for concrete structures.

The present paper aims at tracing the full-range
structural responses, from loading to the post-peak stage,
of the reinforced concrete bridge piers. A degenerate
isoparametric curved shell element with layered model is
adopted to simulate the out-of-plane behavior. Both
geometrical and material nonlinearitics may be
considered. The constitutive relationship of concrete
includes the tensile and compressive softening branches.
To overcome the numerical difficulties near and post-
failure ranges, an arc-length algorithm combined with
line search acceleration in the modified Newton-Raphson
technique is employed, and some  important
parameters affecting the performance of the method, such
as the value of the arc-length and the displacement



controlling increment, are studied. In each increment, the
degree of the nonlinearity is monitored. If high
nonlinearity is predicted, an increment size reduction is
conducted to attain the convergence. With the proposed
procedure, the whole-range structural responses of the
concrete piers, with and without stiffening steel jacket,
are simulated. The experimental results obtained from
the HEPC are used to check the efficiency and reliability
of our numerical simulations. Some other examples with
- different retrofitting means, not yet tested, are also
computed to study the retrofitting mechanism and
efficiency.

2. Layered Finite Element Formulation

The concrete piers to be simulated are in 3D stress
states under the transverse horizontal forces. To simulate
the out-of-plane structural response of the concrete piers,
a degenerate isoparametric thick shell element with
layered model is adopted, considering the real structural
behavior and its key features. This thick shell element
was proposed by Hinton and Owen® . In the formulation
process, two approximations were used: the normals to
the mid-surface remain straight after deformation and the
stress component normal to the mid-surface is ignored.
Each element contains eight nodes, and five degrees of
freedom are used at each nodal point, corresponding to
the three displacements and two rotations of the normal
at the node.

A layered method is adopted to represent the varied
nonlinearities across the shell thickness owing to the
different materials and different deformation states. The
specification of the layer thickness in terms of the
curvilinear normal coordinate permits the variation of the
layer thickness as the shell thickness varies. The element
stiffness matrix k° and the internal force vector f° are
simply defined as:

k* = ([".,B"D,BIdciA (1a)

fe= f f ' B oJdcdA (1b)

in which B is the strain matrix calculated at the mid-
surface of each layer, D,, is the elasto-plastic material
matrix, J is the determinant of the Jacobian matrix and
O is the stress vector at the integration Gauss point. The
total number of the layers in the structure can be taken
arbitrarily depending on the accuracy desired and the
cost of the computation. In our examples, maximum 10
layers of concrete and 20 layers of reinforcements and
hoops are adopted.

3. Material Models

The constitutive relationship of concrete includes the
tensile and compressive softening behavior in terms of
Fracture-plastic expressions, and linear elastic unloading
mode is assumed for both tension and compression.

For concrete in tension, smeared crack model is
adopted. The material behavior is assumed to be linear
until the fracture surface is reached. Concrete cracking is
controlled by a simple maximum tensile stress criterion.
When the stress reaches the critical value, crack is
assumed to form in the plane perpendicular to the
direction of the maximum principal tensile stress. Then a
linear softening model is assumed as shown in Fig.1®,
where the Fracture Energy is not adopted to connect the
softening modulus with the mesh size. The fixed
cracking direction is recorded, which means that the
cracking direction does not rotate in the succeeding stress
variation. A second crack is assumed to form
perpendicular to this crack direction when the stress
criterion is again reached. The shear retention of
concrete in tension zone is also taken into account. In
other words, the cracked concrete is simulated as an
orthotropic material.
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Fig.1 Effective stress-strain relationship
of concrete in tension.

The concrete behavior in compression is supposed to
follow the strain hardening rule of the plastic flow
theory. The yield criterion is defined in terms of the first
two stress invariants®

fUL) =BG val]” =0, @

where [ , is the first invariant of stress tensor, J , is the
second invariant of stress deviator tensor, « and f are

material parameters defined in Ref8, and oy is the
equivalent effective stress, whose value will be taken
from the ultimate stress for a uniaxial compressive test in
our model. The associated flow rule is considered in the
computer code. The concept of effective stress and
effective plastic strain is also adopted to define the work
hardening rule, softening behavior and crush condition.
The hardening rule, softening branch and crush
condition are related with the equivalent uniaxial stress-
strain diagram in compression .as shown in Fig.2.

The initial yield surface is attained when the effective
stress reaches 30%. of the peak compressive stress, then
an isotropic hardening flow rule controls the material
matrix.
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Fig.2 Equivalent uinaxial stress-strain relationship
of concrete in compression.

After the effective stress reaches the peak
strength, concrete is assumed working in the softening
range, and crushing is assumed when the effective plastic
strain reaches 0.0035 or a larger given value. The
softening branch is governed by an input descending
negative modulus ;. The ascending part is assumed as:

o&f =.f;(2x_x2):
Jor f.<c? <0

x=¢?E /(2f) 3)

where 07, g9 are effective stress and effective plastic
strain, f% and E, are peak compressive stress and

initial Young's modulus, respectively. In both tension
and compression, unloading is assumed to follow the
secant modulus from the wunloading point (linear
unloading mode).

As for the reinforcements and hoops, they are all
assumed to be distributed evenly in certain layers in the
structure, and possess only stiffness in their longitudinal
directions. This model is often used in practical structural
analysis, while the retrofitting steel jacket is considered
to be effective in both directions. Their stress-strain
relationships are simplified as bi-linear approximations:
when the yield stress is attained, the corresponding
Young's moduli are reduced to 1 % of their original
values.

4. Arc-length Algorithm Combined with Line Search
Acceleration

In experimental investigations, full range response of
concrete structures, from beginning to post-peak stages,
can be obtained by displacement control mode. But it is
very difficult to model this real existing process with
finite element analysis™®. This is mainly due to the
presentation of the highly nonlinear response with large
deformations near or beyond the peak load owing to the
concrete crushing and reinforcement yielding. For
example, negative tangential modulus, introduced from
the strain-softening of the fracture mechanics of concrete
for cracked concrete, has large effects on stability and

uniqueness of the solution'”. It is necessary to take this

negative modulus into account, otherwise the
computational results will depend on the mesh size.

Moreover, the concrete structures present ‘snap-
through’ or ‘snap-back’ responses connected with strain
localization and alternative equilibrium paths owing to
the softening characteristics. Great effort has been
conducted to trace the whole structural responses in
nonlinear finite element analysis of concrete structures,
but only little achievement has been obtained. The
problem focuses on the suitable selection of the solving
techniques. Near the peak loading, the global stiffness
matrix will become ill-posed owing to the presence of
some very small values or even negative pivot elements,
and the condition number of the stiffness matrix is very
large, which will give rise to a large solution error or
make the equations unsolvable even though the structural
displacements do have solution.

Among various candidate numerical methods, arc-
length method with line search has been proved probably
most successful for nonlinear analysis of the concrete
structures near and beyond peak loads. However, the
efficiency of the method in concrete structures encounter
significant challenges. The iteration process often
diverges or converges to an unreasonable solution”. So it
is necessary to take advantage of this method and to
obtain the reliable results, independent of the simple
parameter choices such as the incremental size and mesh
discretization.

Unlike the situations in load control procedures, a
given value Z, the arc-length, will set spherical constraint
on the iteration path to find related load factor variation
Sh:

AulAu, + CS)2q"q = I? @)

in which Aw, is the incremental displacement vector
after (i-I)th iteration, ¢ is the reference external load
vector, and C is a constant related to the load vector. In
Crisfield’s work, C is set to be zero, so it is actually a
generalized displacement control strategy.

The iterative displacement is

Au,, = Au; +ndu, = Au, +,(d” +0\,d,) ®)

in whichm), is an acceleration parameter determined from
line search (in the case of no line search, n,=D), d" and

dr are iterative displacement vectors corresponding to

the residual and the reference loads, respectively. From
the constraint in Eq.(4), a quadratic equation can be
obtained to solve the load factor variation S

adN +adh, +a, =0 ©)
in which:
a, =m,dyd;
a, =2(d¥Aui +7L-d$d*) @]

a, =2d" Au, +n,d"d"



The acceleration parameter 1}, in the above equation

should be determined from the stationary energy
condition

M M rau =S, =0 )
on, du am,
where W is the system energy. In numerical

computation, it is difficult to meet the above equation,
therefore an optimum slack condition

5;< 0.8S, ®

is usually adopted'®. So 8, and m; should be solved

simultaneously to get the incremental displacement
vector.

From the authors’ computational experience, it is
very important to choose the suitable value of the arc-
length according to the degree of the nonlinearity
encountered during the incremental process. When the
norm of the incremental displacement vector or the
loading point's displacement increment is less than a
given value, the arc-length is taken as 1.256 times of the
norm. While when the highly nonlinear structural
response occurs, for example, the displacement
increment for the same loading increment becomes 20
times more than that of the initial stage, a constant arc-
length will be used to control the displacement
increment. Moreover, the adoption of line search is
necessary to get converged solution near the peak loading
stage from these examples.

S. A Simple Example to Check the Whole Range
Prediction Capacity of the Solver

To check the prediction capacity of our equation solver
based on the arc-length method, a very simple example is
computed. The model is a one-dimensional bar with four
nodes and three elements as shown in Fig.3. Although
this is an extremely simple example, it includes all
respects in usual finite element analysis.

Fig.3 The simple example to check the equation solver.

The constitutive relationship is simply assumed as

o = E*(2¢c° -¢?) (10a)
Ee) =0 c2E*(°—¢) (10b)
de

With assumed parameters of square area A=100, length
L=100, £°=0.0123456789 and Young's modulus
FE=20000, the computed maximum load is 304.775, very
close to the exact maximum load 304.832. As a one-
dimensional problem, theoretical displacement of the
loading end can be simply obtained from the stress-strain
refationship, ignoring the strain localization. The
computed displacements are exactly the same as the
theoretical ones, as shown in Fig.4. It can be seen from
this example that the solver is able to trace whole range
response with softening negative modulus.
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Fig. 4 Computed load-displacement relation.
6. Computational Examples of the Concrete Piers

Some reinforced concrete piers are computed with
developed computer code. These piers include specimens
with and without steel jacket retrofitting. The ultimate
loads and deformations are compared by the
experimental results from the HEPC!? to check
efficiency and reliability, and then some other cases not
yet tested are computed to evaluate the effectiveness of
the different retrofitting means. It should be noted that
these piers are approximately modelled as thick shell
structures, so the normal stress along the thickness
direction and the 3D confining effects from both concrete
and steel are not included. The geometrical nonlinearity
is also not considered for these piers.

6.1 Examples with Experimental Results

The first example is a concrete pier named as No.1 for
short, without retrofitting, see Fig.5(a) and Fig.5(b) for
details. A transverse load is 3000 mm high from the
base. The material parameters of concrete and steel bars
are grouped in Tab.1 and 2, respectively.

Tab.1 Concrete parameters (k cm?)

| Specimen | £ £ E,
No. 1 365 25.7 2. 75%1°
4H 295 23.0 2. 58%1°
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Fig.5(b) Details of the specimen No.1(mm).

Tab.2 Yield strengths and Young’s moduli
of the reinforcement and hoop (kgf/cm®)’

Specimn £, E, fon Ey,
No. 1 3890 1. 81%10° 3343 1.85%10°
4H 3704 1. 91x10° 3398 1.92%10°

* p - reinforcement, # - hoop

4110

194 nodes, 2 different patterns of layer, each pattern
containing 8 layers of concrete and 15 layers of
reinforcements and hoops. Total number of the degrees of
freedom is 970.
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Fig.5(c) Finite element mesh of the specimen No.1.

The load-displacement curve of the loading point is
shown in Fig.6. Computed ultimate load is 22.172 tf,
compared with 22.8 tf from experiment, the relative error
is 2.75%. A softening part with load level 20.892 tf is
obtained.
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Fig.6 Load-displacement relations of the specimen No.1.

Since the experimental data of the stress are not at
hand, only the computational variations of the stresses of

" concrete surface in compression and reinforcement in

A coarse mesh of 200mm*200mm is adopted as shown
in Fig.5(c). The pier is divided into 3*17=51 eclements,

tension are shown in Fig.7 and Fig.8, respectively. The
legends T5, T10, T14 and T15 are referred to the load

— 1155 —

Displacement (mm) »



levels 8.114 tf, 16.583 tf, 21.172 tf and 20.892 ftf,
respectively. From Fig.7 and Fig.8, it is found that the
variations of concrete compressive stress and the
reinforcement stress along the height are nearly linear up
to the load level 8.114 tf. With the increase of the load,
the variations become steeper and steeper, which is
corresponding to the localized deformations in the lower
part of the pier. When the load increases from 8.114 tf to
16.583 tf, stress change rate of the steel bar is quicker
than that of the concrete. The stresses of the steel bar
decrease owing to the softening behavior of the structure.
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Fig.7 Compressive concrete stress
variations along the pier height.
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Fig.8 Tensile stress variations of the
reinforcements along the height.

The second example is named as 4H, following the
denotation from the HEPC. The details for steel jacket
retrofitting are shown in Fig.9(a) and Fig.9(b). The
thickness of the steel jacket is 1.6 mm, with yielding
stress 2990 kgf/om® and initial Youngs modulus
2.14*10°kgf/cm®.

It should be noted that there exists a gap of 50 mm
between the steel jacket and the base, and the bottom of
the pier is stiffened by reinforced concrete with height of

350 mm, whose major reinforcements are anchored into
the base. The anchoring steel bars are 6 mm in diameter,
with yielding stress 5133 kgf/cm® and Young’s modulus
2.05%10° kgf/cm®. In such a way, the steel jacket is not
very effective in the connection between the pier and the
base. In our computation, the contribution of the steel
jacket is reasonably not included in considering the
boundary conditions. The material parameters are also
grouped in Tab.1 and Tab.2.
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Fig.9(a) Elevation of the specimen 4H(mm).
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The transverse load is also 3000 mm high from the
base. The comparison of the load-displacement relation
of the loading point is shown in Fig.10. It can be seen
that the computed deformations, with part of softening
branch corresponding to the load level 23.793 tf, are
close to those from experiment. The computed ultimate
load is 33.237 tf, compared with the experimental value
33.5 tf, the relative error is 0.785 %.
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Fig.10 Load-displacement relation of the 4H.

The variations of the stresses of compressive concrete,
tensile reinforcement and steel jacket are shown in Fig,
11, Fig.12 and Fig.13, respectively. The corresponding
load levels are: T5=8.257 tf, T10=17.631 tf, T15=26.336
tf, T19=33.237 tf and T20=23.793 tf. In Fig.13, the
stresses of the steel jacket in the lower stiffening element
is not included. From these Figs, it can be found that the
deformation localization is limited in the lower part of
the pier. At the maximum load, concrete is crushed, and
both of the jacket and main reinforcements are yielded.
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Fig.11 Concrete stress variations along the pier height.

In the softening branch, the stresses in the lower
elements decrease sharply with the continuing

deformation, and the deformation makes structure
unloading. In real situations, this stage is usually
accompanied with the local buckling of the compressive
steel bars and the jacket.
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Fig.12 Tensile stress variations of the
réinforcement along the pier height.
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Fig.13 Tensile stress variations of the steel
‘ jacket along the pier height.

6.2 Other Examples not yet Tested

From the above examples, the reliability and efficiency
of the computer code, especially the very good predictive
ability for ultimate strength, have been verified. To study
the retrofitting mechanism, some other examples with
different stiffening means are also computed. These
examples keep the same geometrical scalings of the
specimen 4H, with only the lengths of the retrofitting
steel jacket changed. The lengths and the corresponding
predicted ultimate strengths are grouped in Table 3, in
which S represents the length of the steel jacket.

From Tab.3, it can be found that the ultimate strengths



of the piers increase with the length of the retrofitting
steel jacket, but the strengths with the jacket longer than
1414 mm are almost the same. These results show that
the effectiveness of the length of retrofitting steel jacket
is limited, when the length reaches a certain value,
corresponding ultimate loads will not increase any more.

Table 3 Computed ultimate strengths ( tf)”
No.1 No.4H1 No.4H2 No.4H2 No.4H2 4H
without only the with with with with
the jacket | lower RC jacket jacket jacket jacket
stiffener S=841 S=1414 $=1987 $=2535
22.172 1 26.275 | 32.824 | 33.204 | 33.360 | 33.327

* The length of the steel jacket, S, is in mm, see Fig.9(a) for details.

It seems that the extra length of the jacket beyond
S=1414 mm is not necessary if only considering the
ultimate strength. However, the termination of the main
reinforcements at the mid-height in usual engineering
practice will lead to the shear failure of the concrete
piers'®, as occurred in great quantity in the 1995
Hanshin-Awaji earthquake. So it is suggested that a
suitable jacket length should be used to meet the
requirements that the weak part with inadequate main
reinforcements should be stiffened.

7. Concluding Remarks

In the present paper, the arc-length method combined
with line search is adopted to solve the whole structural
responses of the concrete piers. Comparative research of
numerical modeling and experiments on the piers shows
the good ultimate strength prediction capacity of our
newly developed software. Since it is only our first part of
work, the effect of geometric nonlinearity, the most
suitable constitutive relationship of concrete material and
the buckling of the reinforcements and jacket are not
included, which results in the partial capacity to trace
the full softening response of the piers. An improvement
will be conducted in the further research.

The effectiveness of the length of retrofitting steel
jacket is limited. When the length reaches a. certain
value, corresponding ultimate loads will only change
slightly in the case of enough anchoring length of the
main reinforcements. However, considering the practical
engineering situations, it is suggested that a suitable
jacket length should be used to meet the requirements
that the weak part with inadequate main reinforcements
should be stiffened.
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