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The problem of flutter on a long-span, streamlined box girder bridge is revised in the
view of the active control application. Particular aspects such as uncertainties in the
aerodynamic forces definition, the difficulty in the system identification and their
interdependent relationship with the control design are pointed out. In face of these
problems, a control method based on the H* robust control theory is proposed. As
the system is prameterized by a single factor, a control designed to admit this factor
as uncertainty is proved to be simple. Some practical considerations on the
arrangement of control are discussed and numerical examples on a simple 2D model

are conducted to verify the effectiveness.

Key Words: cable-stayed bridge, flutter responses, active control, robust control.

1. Introduction

The design of very long span bridge has always been
an excitation and a challenge for the structural
engineering. Recently, with the rapid advances of
technology, the span length of suspension type bridges
has been pushed up to 2000-3000m and options of
bridge with span as long as 5000m are seriously
considered. One of many difficulties involved in such an
enterprise is the dynamic aspect, since this structure
becomes extremely flexible and easily excited. In a
windy environment, a very flexible structure is
vulnerable which is a serious concern since the wind
flow could trigger the flutter, a phenomenon that in the
past experiences, has led to disastrous consequences. As
such, the dynamic characteristic and flutter resistance
has become an increasingly important factor in the
selection and design of the bridge deck. Experiments and
studies have shown that the aerodynamic stability can be
improved by utilizing a high torsional stiffness, truss-
type deck or by carefully designing the streamlined form
of its section. While such measures have been proved
successful so far, they might fall short in the future for
even-longer span bridges. Specially, when the
requirements for other aspects such as the dead weight,
the drag forces, etc., become more stringent, the choices
of these measures could be much more restrictive. In
such situation, the traditional view of structure as a
passive, static and massive one may need to be
thoroughly revised where active control could have some
role and becomes an integral part. By itself, the idea is
attractive since it starts a new generation of structures
which are adaptive and more responsive to the changing
environment.

Conceptually, active structure and active control by

them-self are well known in other disciplines like
mechanics, aeronautics, or electronics. In the field of

civil engineering, however, these ideas have been only
recently drawing serious attention. Although theoretical
background is the same, their practical application
requires some special considerations due to many
particularities of civil engineering structures such as
large masses, long service life, seriousness of the failure,
uncertainties, ‘etc. In the case of flutter control,
exceptional attention should be emphasized on the later
issue since the flutter is closely related to the stability
problem of a system whose description is often heavily
dependent on the experimental data. Thus, control
method proposed to solve this problem should address
both the system stability and structural uncertainties.
Among many control algorithms devised for various
purposes, the robust control theory based on the H*
norm seems to amply response to this requirement. The
frequency domain approach of this control method
makes it even more appealing and compatible with most
of the tools developed in wind engineering. Another
particularity of vibrating structure in an air flow is the
dependency of the system definition on the mean wind
speed. To monitor continuously and on line this
parameter in a turbulent wind is both impractical and
unreliable. By using the robust control theory.as it will
be shown next, this difficulty can be nicely
circumvented. It will turn out that all the uncertain
factors involved in the system definition are gathered in
a single parameter called reduced frequency. By
designing a control to be independent of this variable, it
could be expected to be robust against all kind of
uncertainties.

The application of active devices to the bridge flutter
control was examined by Kobayashi, H. et al U, The
stabilizing action is achieved through the aerodynamic
forces on a small computer-controlled appendage
attached to the deck. The control law, by the direct
measurement feedback, aims at increasing the damping
of the system. Basing on the similar setup, Wilde, K. et
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al. 2) used the concept of rational functions
approximation to reduce the mechanico-aerodynamic
system to the standard form where the optimal control
can be applied. In reference 3 the idea of robust control
was presented and carried out on a scheme of a static
state feedback controller. However, as it is shown in
their formulation that the aerodynamic forces depend on
some time lag terms, a dynamic measurement feedback
scheme should intuitively have a better performance. It
also enables the incorporation of frequency-dependent
weighting function in the generalized plant making the
control more adaptable to the complex model of real
bridge. Thus, in this study, a more sophisticated control
scheme with the dynamic output feedback will be
explored.

2. Flutter Problem in View of
Control Application

The problem of flutter can be easily understood by a
simple 2D model of the bridge deck as shown in the
Figure 1. With the non-dimensional variable chosen as
r={/b,0}T, the equation describing the motion of the
system can be expressed in the following form:

mb* 0. [kbp* 0O fib
[ 0 I‘jﬂ_[ 0 ka]r+{fM}+w—0 (1a)
Here, m, I, are the mass and the moment of inertia
with respect to the elastic center, kp.k, are stiffness
coefficients corresponding to the heaving and pitching
motion respectively, and b is the half width of the deck
chord. The external forces on the system are divided into
the motion-independent. disturbance w and the
aerodynamic forces: lift f;, and moment fy, . It is also
noted that the first equation is multiplied with the
dimension b so that all the disturbances will have the
same unit of moment. In the compact form, the equation
can be writen as:
M.r+Kr+f, +w =0 (1b)

For a harmonic motion of frequency @, according to
Scanlan 4, the aerodynamic forces can be expressed in
function of the states, air density p, mean wind speed U
and a set of experimentally determined coefficients H,A;
which are functions of a the reduced frequency k:

f1b=2pU%? (kHl* % +kH] 2—”(]3 +

(2a)
2UCH o+ K2H, %)
Fur = 4pU2b2(kAl* %+ kA; —2;’] 2y
(2b)
AL+ KA, -Zi)
where k=22 3

In frequency domain, if the relations among
displacement, velocity and acceleration of harmonic
motions are taken into account, the mean wind speed U
can be eliminated among equations (2) and (3) and the
aerodynamic forces are further reduced to:

Fig. 1 Model of bridge deck.

f, = 0F i+ 0’Fpr=—|iF, + Fp|r =Fyr (4)
where :

* H*

F, =pbt| 2 4 (52)
44; 8A,
2H, 4H,

R e (sb)
44, B8A;

In view of expression (2), the equation (1) now becomes
a set of equations parameterized by the reduced
frequency k:

M, r+Kr=w where : M, =M+F, ©)

The equation (6) describing the system is defined for
values k, which relating the mean wind speed U and the
frequency w. By convention, the flutter occurs when the
damping of the system becomes negative, i.e. the real
part of any system eigenvalue turns positive. Physically,
this means that the vibration is self-excited and the
system becomes unstable. Thus, the calculation of flutter
involves the determination of the wind speed at which
the poles of the system cross over to the right half of the
complex plane. There are different methods for this
purpose, and in this study, an iterative scheme based on a
step-by-step increase of U is proposed.

1) At step i let w; are known. The wind speed is
increased from U; to U}, ;, and an estimation of @,
is made by extrapolation of w;, ®;_;,...

2) The reduced frequency k is calculated from (3) and
the equations (6) are formed.

3) Eigenvalue problem can be solved, preferably by
some iteration methods since an approximated
estimation is available.

4) The newly calculated eigenvalue is compared with
the assumed one, if the error is small enough go to
the next step, if not, a better estimation of ®;,; is
made and the procedure goes back to the step 2.

5) The steps 2-4 will be repeated for every mode.

The above described scheme is based on a reasonable
assumption that the dynamic characteristics of the
system do not change radically with a small increase in
wind speed. The procedure is therefore like tracking the
movement of the system poles in the complex plane
when U varies. For starting the loop, a zero wind
condition can be assumed and the poles of system
without aerodynamic forces can be easily computed and
used as the first values of @. Once the maximum wind
speed is attained, the real part of the eigenvalues plotted
against U will give a picture of the dynamic behavior of
the system. If a feedback control force u is applied, it
may be more convenient to work with the state variable
x = {r,r}". The system then will become:
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Fig 2. Flutter behavior of the 2D model.

Mx+K.x+B,.w+Bu=0 ; y=Cx

q=Aq+B_y ; u=C,q+D_y (7,0)
where :
— [M,,:0 = [0:iK
= (k) . —.7..
M'[""O ..... 3,..1] : K [—I : 0] ®

The variable y is the measurement, and the second
equation describes the controller with q as the internal
state variable and other matrices have the appropriate
dimension. The two coupling systems: structure-
controller can be merged:

M 0 {x} " K+B,D.C B,C, {X}={_B1w}
0 Iilgq —BCC _Ac q 0 9)

The stability of this system again can be predicted by
the same procedure described previously. In the Fig. 2,
the results of flutter analysis by the mentioned method
for the 2D model of Fig. 1 are shown. The stability of the
system is indicated by the real part of eigenvalue. In this
case, the vibration becomes self-excited for U>50m/s.
The vibration mode shows that the initial pitching
dominant mode is the unstable one, however, as the wind
speed rises, both modes become heaving dominant (Fig.
2¢). The main difference here is the phase angle between
the 2 motions. In comparison with the heaving, pitching
motion of unstable mode is 90° lag while the difference
in stable mode is 180°. This observation seems to point
out that control based on the natural modes at zero wind
main not be appropriate.

3. Robust Control and Flutter
Suppression

In the general case, a dynamic system with a feedback
control u can be expressed as
x=Ax+B, . w+B,u
y=C;.x+Dj,.u (10)
z=C,.x+Dy.w
Where x is the state variable, y is the controlled output, z
is the measured variables, w is the disturbances. Matrix
Dy, is for including the control forces magnitude in the

output and matrix D, is to include the noise on sensors.
Providing that the matrix My, is not degenerated, the
equation (7) can always be reduced to this form. In the
frequency domain, equation (10) can be equivalently
represented by the transfer function G from input to
output. If the input is [w u]T and output [y z]T, then G
will be:

G=C[(Ls-A)]'B+D an
B=[B, B,];
Wlth . _ Cl . - O D12 (12)
C—[C;} D_[Dn 0
The control structure Q is represented by:
_Ja=A,.q+B_ .z
Q(S)'_{u=Cc.q+Dc.z} (13)

The design task is the determination of A ,B.C.D,
according to certain performances criteria. For the H*
control, the "performance" is reducing the "size" of the
close loop transfer function G measured by the H* norm
below certain level and guaranteeing the stability of the
system:

HGQ(s) oo = g‘ég p[GK(s)(ia))] <Y
c(A+B.Q)c [C':= {seClRe s< O}]

14

The control design procedure is seemed to be straight
forward: first, the state equation for the flutter is derived
and then, a static state-feedback control law can be
determined from the equation (7) and the stability of the
system is guaranteed by equation (14). However, a
careful inspection reveals that the problem is more
complicate. The state equation as in equation (7) is
dependent on the reduced frequency k which by itself
relating the wind speed with the frequency of vibration.
Thus, the complete identification of the system requires
the knowledge of the mean wind speed and the
frequency of the system. Continuous monitoring of the
mean wind speed for the feedback might pose some
difficulties due to interaction of the structure with the air
flows and their turbulent characteristic. In the Fig. 3, the
contour map of frequency responses measured by the
singular value of the transfer function is plotted against
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Fig. 3 Contour plot of responses in the k- plane.

o and k. The actual system corresponding to certain U is
defined at more than one k. For a real control system
which works at a fixed wind speed at a time, this means
that there some induced uncertainties by taking k as a
constant. From the traditional conservative standpoint of
the civil engineering, the solution is then to devise a
unified control which can render an acceptable
performance for all possible sitnations. As all the
mentioned uncertainties are induced into the plant
through k, a control designed to be robust against the
variation of this parameter should work reasonably well
in all situations. Consequently, this control is expected to
be more tolerant to any inaccuracy in the flutter
derivative coefficients whose determination is often
based on the uncertainties-prone data of experiments.

For a nominal plant G, corresponding to a chosen
value k,, the whole family of other plants on the
neighborhood will be defined as Gi=G,+AG. The size of
the disturbance AG can be again measured by the H*
norm and is bounded by a function r(jw} as:

IAG., = pmax [AG(j@)] S |r(jw)]  forallew  (15)

According to Francis and Doyle (1987) 9 the control Q
stabilizes all G if it stabilizes G, and:

lea-co*| <1 (16)

Hence, once r(jg) is determined, the design procedure is
straight-forward. In the general case where number of
uncertainty parameter is high, determirting the upper
bound of |AG]|, as a multi-variables function is not so
easy and obvious. Fortunately, in the flutter problem, as
it is pointed out in the previous section, the system can
be determined in function of one parameter k, therefore,
numerical technique can be used to evaluate the norm of
AG and determine the function r(jg). It can be also
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Fig. 4 Nominal plant with weighted function.

observed that the range of & can be limited according te
the interest of design. The most convenient way to cover
all G, is by scaling up the nominal chosen plant G, as
shown in the Fig 4.

The fact that the active control by minimizing the Hoo
norm can be made more robust with any upper bound
frequency-dependent function of uncertainties opens up
many more possibilities for the design. For a nominal
plant G, chosen, some frequency weighted function Wj

‘can be added to scaled up the outputs. The resulting

generalized plant with all the weight Wj embedded will
have the norm that meets with the criteria established in
equation (15). One of such generalized plant is shown in
the figure 5. The inputs include the disturbances and the
noise in the sensors. The outputs are the structural state
and the control forces scaled up by the frequency
weighted functions W,,W,. The frequency response of
the system scaled up by W, functions is shown in the
figure 4. The control objective then becomes:

(WZ(I—GQ)"‘
W.Q(1-GQ)"

with:

AG,=G,-G,
In this case, the nominal plant G, is decided by choosing
a value of k=k,, then singular values of other plants Gj
determined by k; will be analyzed for a decision on
weighting functions. The transfer function in expression
(17) can be again written in the standard form of a
dynamic system as in equation (10). Evidently, all the
vectors and matrices are now representing the
generalized plant. The existence of a control law
depends on the two Riccati equations:
A’X+XA +X(y7?B,B] -B,B;)X+C;C, =0
AY + YA+ Y(yCiC; -C5C,)Y + BB =0
Providing that the solutions of both (18) exist and are
semi-definite, it will be possible to construct dynamic
controllers as in (7b) which makes the H* norm of the
close loop transfer function less than the attenuation
factor ¥3. One of such controller is:
D, =0
C.=-B5X
B, =(I-7%YX)'YC)
A.=A+(y*B,B; -B,B;)X~B,C,
The controller described is only a sub-optimal one. To
determine the optimal H*, an iterative scheme by
successively decreasing the value of y until a marginally
conceivable controller is found. Once the control is
designed, the close loop system can be formed as in the

<y (17a,b)

£

(18)

19)

Qcs)

Fig.5 The generalized plant with weighting function.
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Fig. 6 Close-loop of structure-control system.

equation (9) and analyzed by the method of flutter
prediction described in the preceding section.

The control problem adressed so far has been based
on the system stability and small size of transfer
function, which does not take into account the
intensities of the disturbances. It is obvious that
magnitude of the control forces should be determined in
diret relation with the later as a steady response of the
system. In an equilibrium status, the level of vibration
once stabilized is a direct function of the motion
independent disturbances. The controller as a feedback
has the system output as their input and therefore, a
relationship could be derived. Consequently, the control
forces hold an indirect relation with the motion-
independent disturbances and their determination is only
possible in function of the later. However, since both are
inputs to the system, a direct relation between them is
not straightforward. One way to estimate the ratio of
control force intensity and the disturbance is obtained by
relating both through the state response.

Considering the close loop system, the magnitude of
control forces as an internal signal should be uniquely
determined by w. To quantitatively assess the control
forces, the transfer function between w and u can be
determined and the norm of this function can be a good
index of control expense and control performance. For
the system as shown in the Fig. 6, the close loop transfer
function from w to y is:

y=C[(M.s+K)-B,Q,)C,| Biw (20)

On the other hand, if the control forces are considered as
external disturbances, the open loop of the system could
be:

y=C[(M.s+K)] ' [B;.w+B,.u] @1

If the observed output y is identical to the state x, i.e.,
C,=1, then by comparing (20) with (21) it leads to:

B, u= {(M s+K)[(M.s+ K)-B,Q,,C; ]" - I}B1 W
The "size" of T(s) measured by some appropriated norm

. o~
Fig.7 Installation of active devices.

can serve as an index of the magnitude of control forces
for the disturbances of intensity equal unit. The control
law Q(s) determined in equation (7b) is the transfer
function from z to u and can be explicitly expressed as:

Q)= Cc[I's_Ac]_ch +D, (23)

By substituting Q(s) into equation (22) the transfer
function T and their frequency response can be
determined. However it should be pointed out that this
measure of T as the norm of a transfer function usually
represents the worst case and at such overestimates value
of u.

4. Numerical Examples

To investigate the effect of this control method, a 2D
model of the bridge section as shown in Fig. 1 is used.
The main parameters of model are: m=2.95x103 kgf-
m/s2; b=15m; I4=5.88x105 kgf-m3/s2; kp=447 kgf.m/m;
k(x=4.68><105 kg-f/m. The deck is considered as a flat
plate and therefore, their acrodynamic coefficients are
computed from the Theodosen function. The natural
frequencies of this structure is very low, 0.892 rad/s for
the pitching and 0.389 rad/s for the heaving motions.
The wind speed at which flutter occurs is very low, just
over 50m/s. The control will be based only on the
twisting moment, which can be generated by a rotating
cylinder or by an eccentric weight as suggested in the
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Fig 8 . Control designed with ko=0.3.
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figure 7. From the installation point of view, the
application of .active moment seems to be simpler than
the active forces. It could be indicated that at the low
wind speed, the pitching and heaving motions are
uncoupled. Consequently, the active moment should
have a very weak controllability over the heaving
motion. As the main objective is the flutter, this
observation is not the limitation.

First, appropriate weighting functions should be
designed. For that purpose, the singular values of
transfer function Gj are plotted against k and w (Fig. 3).
It can be observed that the structure could become more
unstable near the origin and small k. However, as the
whole plane is divided by the constant-wind lines, not all
of these points have to be considered. Specifically, all
points below the maximum design wind speed line can
be considered as unreal and discarded. This may suggest
that the range of design wind speed can be prefixed
beforehand and the weighting functions are determined
accordingly. For this example, a Umax=100 m/s is
assumed for the plot in Fig. 4. Here W, is chosen to
penalized the observed output in the low bandwidth
where the structure modes are expected. By contrast, the
function W, is applied to the controller output therefore,
it penalizes on the high frequency responses of actuator.
Such a strategy can make the controller energy more
concentrated on the interested frequency range and at the
same time, reduces the sensitivity where the noise could
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a) Eigenvalues of the close loop b) Frequency
responses of T(s) function from w to u.
Fig. 10 Control designed with k=0.125, and small ¥.

be disturbing. The details of designing these weighting
functions can be seen in reference ¢

Once the weighting functions are resolved, a
generalized plant is build as shown in the Fig. 4. It
should be noted that there are still many choices on the
selection of the outputs to regulated among the state of
the system. The implementation of this control as a
compensator is applied to the system of equation and the
model is subjected to a flutter analysis with the results
presented as the variation of the real and imaginary part
of the system eigenvalues in function of the wind speed.
To compare the intensity of control forces, the frequency
response of the transfer function T, as defined in the
equation (22) is also shown at different values of wind
speed U (5-100m/s), however, the range from 50m/s to
80m/s, where an active control is most likely needed is
clearly shaded. Three examples are considered, the
model] 1 is calculated for a nominal £4=0.3 (Fig.8) which
corresponding to a rather low wind speed. Other two
examples are calculated for ko=0.125 with different
attenuation factor y and therefore, different degree of
robustness. Model 2 (Fig.9) has a much higher
robustness than model 3 (Fig.10). It can be noted that all
models satisfy the requirement of stability with the
flutter occurs in the model 1 at 100m/s wind meanwhile
the other two models seem to be stable beyond this
value. The choice of small ko could be more
appropriated for the flutter suppression. In fact with
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ko=0.3, the stability requirement can only be met with a
very robust design. The controller used here as a
dynamic feedback or compensator, has its own internal
poles which increase considerably the total number of
the poles in the final system (for simplicity, poles in the
figures that seem constant or irrelevant are omitted).

The frequency responses of transfer function T(s) can
be used to both investigate the dynamic behavior of the
system and assess the "economy” aspect of the control
design, i.e., the forces required. In general, when the
controller becomes more robust, the frequency response
becomes flat like an all-pass filter, however, in all cases
there is a pick at = 0.4 at low wind speed. This is due
to the limitation in the controllability at small U. As only
moment is used, the heaving mode which has the natural
frequency equal 0.389 can not be controlled when it is
not coupled with the pitching mode. However, as the
main target it the improvement of flutter resistance that
always occurs at the high wind, this point should not
jeopardize the control performance. In fact, at a higher
wind speed, controller seems to be more effective. This
observation does not necessarily mean that the control
intensity will become less since this is expressed for the
unit disturbances forces which often depend on the
frequency and wind speed as well. Judging by overall
consideration, the control as seen in model 3 that is well
behaved at the flutter threatening wind speed while
makes a minimum change in the system frequency seem
to be preferable.

5. Concluding Remarks

The results of this study have shown that robust
control methods can be effectively applied to improve
the flutter resistance of the bridge deck. It also provides
a simple and convenient way to tangle the problem of
uncertainties that has always been a great concern in the
application of active control to the civil engineering
structures in general. The inclusion of frequency
weighted function in the generalized plant makes this
control method more reliable in the application on the
real, complex and multidegree of freedom structure
system. By targeting fixed frequency bandwidth, the
control allows the use of method of model reduction
without the danger of spill-over. Through examples in

this paper, it is shown that it is possible to design the
control with only active moment. The intensity of the
control forces, can be related to the external disturbances
by the transfer function norm. Through the examples, as
the sizes of this norm measured by the singular value are
shown to be less than 10 folds, it is possible to design the
controller with forces about 3 times the order of the
motion-independent disturbances. This observation can
be encouraging since in the natural windy environment
the initial disturbances are usually small.

The application of this control method to a more
complex and real 3D structure model in affiliation with
some suitable model reduction scheme will be the topic
of future research.
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