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It is getting more and more significant to understand the flow about an oscillating biuff body. In
this paper we report our experimental and numerical studies on the flow about a rectangular cylinder
which is forced to oscillate in-line with a uniform incident flow at amplitude of a/H=14% (H: cross-
flow dimension of cylinder section) and at various frequencies. Force measurements made on mean
values of drags C, and rms values of lifts C, at Re=4X10°show that both C,, and C, values don't
have sharp changes which are experienced by a circular cylinder within the lock-in region of in-line
oscillation. Instead, they only show some slight changes. The vortices can shed in different
combinations of two source frequencies, i.e., natural shedding frequency f, and forced oscillatory
frequency f, of the cylinder, and can easily synchronize with the latier. The synchronization range
can be divided into two kinds and is much wider than that of a circular cylinder. Visualization is also
conducted in a water tank, using the hydrogen bubble method, to show the flow patterns and the
effects of in-line oscillation on the wakes. The flows under the same conditions but Re=10° were
two-dimensionally simulated with DS (Direct Simulation) method. Both measured forces and
visualized flow patterns are presented and discussed together with the two-dimensional simulations.
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1. Introduction

When one of the inherent frequencies of a bluff body
is near the Strouhal frequency at which vortices are
naturally shed from corresponding stationary body, the
body can undergo vortex-induced oscillation in a
direction transverse to or parallel to the incident flow if
the damping of the system is sufficiently small. A range of
frequencies also exists near the Strouhal frequency of
vortex shedding where the induced transverse or in-line
oscillation of the body cause the vortex frequency to be
captured by, or to synchronize with, the body's oscillatory
frequency.

Most investigations on vortex-induced oscillation and
its forced-body analogue have concentrated upon
vibration transverse to the flow, but vortex-induced
oscillation also occurs in the direction in-line with the
incident flow. Only recently, some researchers paid their
attention on the flow past a cylinder oscillating in-line
with a uniform incident flow or a fixed cylinder placed in
a pulsating incident flow. Among them are Tanida et al.!!,
Griffin & Ramberg!®, Knisely et al.”), Naudascher™ and
Ongoren & Rochwell™, Okajima & Kitajima®™ and
Minewitsch et al.[”

Most early studies concerning in-line oscillations
were concentrated on circular cylinders. Tanida et al.t!
were probably the earliest to measure the fluctuating lift

and mean drag forces for a circular cylinder oscillating in-
line with an incident flow. They found that the vortex
shedding frequencies synchronize with the oscillating
frequency in a range around double the Strouhal
frequency. The fluctuating lift and mean drag forces take
maxima in the middle of the synchronization range.

On the other hand, King et al.®* studied the free
response characteristics in streamwise direction of a
circular cylinder and found that there are two regions of
excitation. One is within a range of reduced velocities
between roughly 1 and 2.5, and the other above 2.5. They
also noted two distinct forms of vortex shedding modes,
with symmetric shedding prevailing in the first excitation
region and antisymmetric shedding the second. Griffin
and Ramberg® measured the bounds of regime in which
the forced vibration of a circular cylinder can control the
vortex shedding and cause the lock-in phenomenon. They
visualized the flow patterns and found that the two distinct
forms of vortex street also exist in the flow around a
forced oscillating cylinder.

For rectangular cylinders, Knisely et al.® studied the
effects of small amplitude perturbations imposed over a
mean flow on the pressure coefficients and wake
development. With the pulsation frequency equal to twice
or four times the natural shedding frequency, the mean
base pressure shows a decrease when compared with its
value in steady flow. Flow visualization shows this
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decease in mean base pressure to be associated with
increased vortex strength, decreased vortex formation
length, and the corresponding increase in shear layer
curvature. When the perturbation amplitude exceeds an
undetermined threshold value at a frequency
corresponding to four times the natural shedding
frequency, two vortices are shed simultaneously and
symmetrically with respect to the body center-line.

The most recent study on rectangular cylinders under
in-line oscillation is the numerical simulations by
Minewitsch et al.l”? They numerically calculated the flow
around a square cylinder oscillating in-line with the mean
flow at a low Reynolds number Re=200. The unsteady
forces on the cylinder are calculated and the interaction of
vortex shedding and forced cylinder motion is examined,
in particular the occurrence of the lock-in phenomenon.
The numerical results lead to the postulation of three
regimes for antisymmetric vortex shedding, which was
compared with the lock-in regime given out by Griffin and
Ramberg!? for circular cylinder.

In this paper, we measured fluctuating lift and drag
" forces acting on a rectangular cylinder of different side
ratios (B/H=1, 2, 3 where B refers to streamwise dimension
of cylinder section and H the cross-flow dimension) which
was forced to oscillate in-line with an incident flow at
Re=4X10? and at various Strouhal numbers. Also obtained
are the frequencies of vortex shedding and the phase
differences of drag forces with respect to cylinder
displacements. Visualization is employed to understand

the flow patterns and wake structures. Furthermore, the

flows under the same conditions but Re=10? were two-
dimensionally simulated with DS (Direct Simulation)
method, and the simulated results were compared with
those of experiments. Parts of simulation results were
reported beforel%.

2. Experimental Facilities
2.1. Experimental Setup

The experiments were conducted in an open water
tank facility, of which the dimensions are 10 meter in
length, 70 centimeter in width and 40 centimeter in depth.
A platform with an oscillations-generating device upon it
can move along the rails of water channel, driven by a DC
servomotor of high quality, as shown in Fig.1. The velocity
of platform can be regulated by changing the voltage
inputted to a servo amplifier. The oscillations-generating
device can produce in-line oscillations in the Strouhal
number range of 0.0 to 0.5 by using a stepless speed-
change motor (rotating speed from 0 to 208 rpm). When an
axial cam coupled with the stepless speed-change motor
rotates, it causes models to vibrate sinusoidally at a certain
amplitude which is controlled by a specially designed
groove on the surface of the cam.

Three rectangular cylinders of side ratios B/H=1, 2, 3
were used in the experiments with H, which is 30mm,
facing the upstream flow. The cylinders are 360mm in span
dimension and made as light as possible to make small the

Fig.1. The experimental setup; Dopen water
tank, @testing model, @platform, @load-cell,
®stepless speed-variable motor, ®axial cam,
@servo amplifier, ®DC servomotor

inertia forces of the models. The Reynolds number is Re=4
X 10% In all cases, the models are either stationary or
forced to oscillate, of which the reduced frequency or
forced Strouhal number St (=f H/U, where f, is the forced
frequency and U the velocity of incident flow which
equals the speed of the platform) is in a range form 0.0 to
0.5, and the amplitude is a/H=14%.

2.2, Data Measuring and Processing

A load-cell with sensitive semi-conductive gauges
(KYOWA) building Wheatstone bridge is used to measure
fluid forces directly. The load-cell is so designed that it
can only measure the forces in one direction in one
experimental run with the advantage of being insensitive
to the forces in other directions. It should be turned by 90°
in order to measure the forces perpendicular to the
previous direction. Before the experiment, the load-cell is
statically calibrated by attaching weights to the model.
The natural frequency of the cylindrical models is above
20H?z for all three models, sufficiently high with respect to
the phenomenon frequency of the wake flow.

The displacement of model is measured by a Multi-
Use Vibration Meter, and the frequency of forced
vibration by a circular slit installed on the shaft of the
stepless speed-variable motor. Both displacement and
force signals were presented to a low-pass filter and then
recorded into a personal computer automatically and
analyzed on a computer workstation to provide mean
value of drag, rms value of lift, frequency spectral
analyses of lift signals and phase differences of drag forces
with respect to cylinder displacements. Before
experiments, the inertia forces of the model itself were
measured with the cylinders oscillating in still air and then
subtracted from the overall forces measured in a uniform
incident flow.
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Strictly speaking, corrections to the measured data
should be made due to the blockage effects from the both
side walls. In the present paper, however, no correction
was made because there exists no available correction
method now for an oscillating rectangular cylinder.

2.3. Flow visualization method

The flows were visualized using hydrogen bubble
method, of which one prominent advantage is its ability to
get instantaneous flow patterns. The platinum wire
generating hydrogen bubble was located about 10mm
ahead of cylinder. A laser generator was used to produce a
laser sheet parallel to water surface to show the flow
-pattern. A video camera was mounted on the platform to
record the fluid motion with fespect to the oscillating
cylinder. All visualization photos in the present paper
were printed out from video tapes using a UP-1800 SONY
Video Printer.

3. Outline of Numerical Simulations

Fundamental equations of numerical simulations are
the Navier-Stokes equations and continuity equation
based on assumptions of unsteady, viscous,
incompressible and laminar flow. The equations are
discretized over elementary control volumes on a body-
fitted curvilinear coordinates system. The space derivative
terms are discretized by the QUICK scheme for

convective terms and by the second-order central

difference scheme for all other terms. For time marching,
the implicit Crank-Nicolson scheme is used. The Poisson
equation for a pressure is solved by the Successive-Over-
Relaxation (SOR) method, and the Navier-Stokes
equations are solved to satisfy the continuity equation,
following the algorithm of SIMPLE method.
Corresponding to the forced oscillation of cylinder, the
convective terms (v + V )v in Navier-Stokes equations are
replaced by ((v=V) *+ V )»y where v is the velocity vector of
incident flow, and V that of forced oscillation. Boundary
conditions are uniform flow at upstream inlet and at upper
and lower surfaces of the two dimensional computational
domain, zero-gradient flow-at downstream exit, and no-
slip conditions at surfaces of oscillating cylinder. The
simulated results are shown and discussed together with
experimental results.

4, Experimental Results
4.1. Unsteady lift and drag forces

Consider a rectangular cylinder oscillating in-line
with a uniform incident flow with a displacement of x(t)=
x,Sin(27fr), the hydrodynamic lift and drag forces acting
~on the cylinder are composed of mean values and
fluctuating parts. Due to the symmetry of rectangular
cylinder, the mean values of lift forces are always zero, so
we only present the rms values of lifts C, and mean values
of drags C,, for discussion about hydrodynamic forces.
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Fig.2. Variations of lifts C, and drags C,

along forced oscillatory Strouhal number St

for square cylinder under in-line oscillation

at amplitude of a/H=14%
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Fig.3. Variations of lifts C; and drags C,
along forced oscillatory Strouhal number
St_ for B/H=2 cylinder under in-line
oscillation at amplitude of a/H=14%
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Fig.4. Variations of lifts C, and drags C,
along forced oscillatory Sirouhal number
St_for B/H=3 cylinder under in-line
oscillation at amplitude of a/H=14%

Fig. 2 shows the variations of lifts C; and drags C,
along the forced Strouhal number S¢_for square cylinder
under in-line oscillations of amplitude a/H=14%. As
shown in the legend, the solid circles and triangles
represent experimental results and the open ones are
simulated results. Also shown in the abscissa is the natural
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Strouhal number St (=f H/U; f, is the natural vortex
shedding frequency from stationary cylinder). From the
figure it can been seen that the drag forces keep almost
constant up to about St =0.16, after which the drag forces
increase somewhat and then drop to another constant
value at about St =0.34. Corresponding to this plateau
values of C,), the lift forces seem also have a wide swelling
part. Both increases in C, and C are thought to be
concerned with such a synchronization region that the
vortex shedding frequencies synchronize with half of the
forced frequencies and the vortices shed alternatively (as
will be discussed in next subtitle). Unlike the case of
forced transverse oscillations in which the lift forces
increase greatly at high forced frequencies, the lift forces
of in-line oscillations don't change that much and only
increase a little after Sz > 0.42. Compared with numerical
simulations, it can been seen, the C, curve agrees well with
that of experiments, but the C, curve is some far from
satisfaction. Some remarks on comparisons of
experimental and simulated results and on reasons of the
discrepancy will be given in section 6.

Some interesting comparison can be made between
the 1ift and drag forces acting on a circular and a square
cylinder under in-line oscillations. In the literatures,
Tanida et al.!") once measured the lifis and drags acting on
an oscillating circular cylinder. They found that the rms
lifts and mean drags take maxima in the middle of the
synchronization range where the vortex shedding
frequency synchronizes with the half of forced frequency
around double the Strouhal frequency. The peak values
increased, respectively, by about 180% and 100% for C,
and C,,. For square cylinder in the present measurements,
however, there are only some small increases in C, and C,
about 80% and 20% respectively, and the C, even
decreases to a smaller value after the platean.

The variations of lifts C; and drags C, along forced
Strouhal number S¢_for B/H=2 and 3 cylinders are shown
in Figs.3 and 4. The symbols for experimental and
simulated results are the same as in Fig.2 and shown in
legends. It is confirmed again that the lift forces don't
change as much as in transverse oscillation cases; they
only increase a little at very high forced Strouhal numbers.
For drag forces, there exists a small peak at about St =0.35
and 0.28 for B/H=2 and 3 cylinders, respectively. These
two peaks also correspond well to the synchronization
regions where the vortex shedding frequencies
synchronize with half of the forced frequencies and the
vortices shed alternatively as shown later in Figs. 6 and 7.
Comparing experiments with simulations, we find that,
once again, the agreement on C,, curve is relatively good
and on C; curve far from satisfaction. The strict symmetric
vortex shedding in simulations, which is not likely to
occur in experiments, is responsible for the sharp
decreases of lift forces and thus results in the discrepancies
(see section 6).

4.2, Frequency components of vortex shedding

Figs.5, 6 and 7 show the variations of vortex shedding

St./St,

St/St,

St/St,
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Fig.5. Variation of vortex shedding Strouhal
number St, along forced oscillatory Strouhal
number S¢_ for square cylinder under in-line
oscillation at amplitude of a/H=14%
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Fig.6. Variation of vortex shedding Strouhal
number Sz, along forced oscillatory Strouhal
number S¢_for B/H=2 cylinder under in-line
oscillation at amplitude of a/H=14%; the
symbols are used in the same way as in Fig.5
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number S¢_for B/H=3 cylinder under in-line
oscillation at amplitude of a/H=14%; the
symbols are used in the same way as in Fig.5
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Fig.8. Frequency spectra of lift signals from
square cylinder oscillating at amplitude a/H=14%
and at (a) St =0.08, (b) 0.34
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Fig.9. Frequency spectrum of lift signal
from B/H=2 cylinder oscillating at
amplitude a/H=14% and at St =0.44

Strouhal numbers St (=f H/U; f, is vortex shedding
frequency) along forced Strouhal numbers St_for B/H=1,2
and 3 cylinders under in-line oscillations of amplitude a/
H=14%. The vortex-shedding frequencies f, are obtained
from the spectral frequency analyses of C; signals. As C,
is dominantly determined by the shedding of vortices, the
frequency of C, is considered to stand for the frequency of
vortex shedding in the wake. In the figures, the 1st peak, as
well as the 2nd and 3rd peaks if apparent, in the frequency
spectrum is shown. The simulated results are also given
for comparison.

From Fig.5, it can be seen that the vortices mainly
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Fig.10. Phase angles of drag forces relative to
cylinder displacements along forced oscillatory
Strouhal number S _for B/H=1 cylinder under
in-line oscillation at amplitude of a/H=14%

shed in three different frequencies, based on which the
wake flow features can be divided into three kinds as the
forced Strouhal number S, increases. One is the Natural
Vortex Shedding (NVS) region, where dominant shedding
frequency is the natural frequency (see Fig.8(a)). The
other is the Symmetric Vortex shedding Lock-in (SVL)
region, at about 0.1=Sr <0.14 and St =0.38 as in Fig.5,
in which the vortex shedding is synchronized with or
locked into the forced oscillation in such a way that the
vortices shed almost symmetrically in near-wake and thus
in the same frequency with the forced one. The third is the
Alternate Vortex shedding Lock-in (AVL) region, at about
0.2=S¢ =0.36 as in Fig.5, where the vortex shedding is
locked into half of the forced frequency, i.e., each side of
the cylinder sheds one vortex every two vibration cycles
and forms alternate vortex street in the near-wake. The
AVL region of square cylinder is centered at about double
the natural Strouhal number St . It is well known that in the
wake of a circular cylinder under in-line oscillation, the
AVL region is also centered at double the natural Strouhal
frequency.

From Figs. 6 and 7, it can be seen that there appear
also NVS, SVL and AVL regions at different stages of
forced oscillations. Of particular interests is that the AVL
region is located at about S¢ =0.33 for B/H=2 cylinder,
although that of B/H=3 cylinder is still centered at about
2S¢ . From Otsuki et al.('"], it is known that the variation
curve of natural Strouhal number Sz, with the change of
side ratio B/H has a jump at about B/H=2.8. Before the
jump, the shear layers are fully separated from the
afterbody and form alternate vortex street in the wake,
while after the jump they reattach with the afterbody and
then shed to the wake alternately. For cylinders with side
ratios of from 2.0 to 2.8, however, the wake flow has
another natural shedding tendency, which corresponds to
reattaching flow patterns and is about St '=0.16 for B/H=2
cylinder. This second natural shedding frequency can be
amplified under certain external excitations and results in
reattached flow patterns. At AVL region in Fig. 6, the
forced frequencies are about twice this second natural
shedding frequency and thus trigger the reattached flow
patterns.

If we compare Figs.5, 6 and 7 with Figs.2, 3 and 4, it
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can be seen that the AVL region is dynamically
characterized by the plateau values of C, . For a circular
cylinder under in-line oscillations, the lock-in range is not
so wide, say, fromf /f =1.55 to 2.5 at oscillatory amplitude
of a/lH=14%". For a rectangular cylinder, however, the
lock-in or synchronization range is much wider because its
long afterbody, acting as a splitter plate, substantially
weakens the interaction of upper and lower shear layers
and makes difficult the formation of normal Karman
vortices. Therefore the vortex shedding can be much more
easily effected by the external disturbances. The lock-in or
synchronization can be realized either in SVL mode or
AVL mode.

It is very interesting that there is a phenomenon of
frequency combination, as shown by the second or the
third peaks at Sz /St =0.66 in the range of St_between 0.2
and 0.34 in Fig.5. This range coincides well with the AVL
region, where, as shown in Fig.8(b), in addition to the 1st
peak (captured vortex shedding frequency, equal to half of
the forced) and the 2nd peak (forced frequency), there is a
3rd peak which is a combination of the former two (St /
2+8t). As the forced frequencies roughly double the
natural shedding frequencies in AVL region, i.e. St /2=St,,
it is actually the combination of two source frequencies,
namely, the natural shedding frequency and the forced
one. In a system composed of oscillating body and flow,
there are mainly two source frequencies, namely natural
vortex shedding frequency and the forced oscillatory
frequency. When the forced frequency is near twice the
natural one, there exists possibility for the combination of
these two frequencies. This frequency combination
phenomenon is also found by Minewitsch et al.'” in their
numerical simulations. For B/H=2 cylinder as shown in
Fig.6, the second peaks at Sz =0.44 represent the one third
component of forced frequency, of which a spectral
distribution is shown in Fig.9 as an example.

One more thing that should be noted in Fig. 5 is that, at
St =0.16 and 0.18, there occurs the so-called deviation
phenomenon found by Barbi et al.l'2. In their experimental
study of a circular cylinder in oscillatory flow, Barbi et al.
found that, although it is universally accepted that bluff
bodies shed vortices either at their natural frequency or at
the frequency of the disturbance, or harmonic of it, the
change from natural shedding to synchronized shedding is
not in an abrupt way, but through a transient process in
which the vortices are shed neither at natural frequency
nor at harmonic of driving frequency but something
between them. The present results confirm that this
phenomenon also occurs for square cylinder although the
separation points of flow is fixed.

The numerically simulated results (open triangle
symbols) show a relatively good agreement with those of
experiments, although for B/H=2 cylinder, the one third
component seems to be dominant in high frequency range.

4.3. Aeroelastic features estimated from forced in-line
oscillation test

Fig.10 shows the phase differences between the drag

(a) $.=0.15

(b) St.=0.2

(c) St=0.3

(d) St =0.45
Fig.11. Visualized flow patterns around a square
cylinder oscillating longitudinally at (a) St =0.15, (b)
0.2, (¢) 0.3 and (d) 0.45 and at amplitude a/H=14%; all
photos are taken at the maximum upstream position
during one cycle of oscillation

forces and body displacements for square cylinder under
in-line oscillation of amplitude a/H=14%. Phase angle is
defined as the angle by which the drag force leads the in-
line displacement of the cylinder. As well known, a
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() S1.=0.3 () $1=0.3

(d) St =0.45 (d) St =0.45
Fig.12. Visualized flow patterns around a B/H=2 Fig.13. Visualized flow patterns around a B/H=3
cylinder oscillating longitudinally at (a) St =0.15, cylinder oscillating longitudinally at (a) St =0.15,
(b) 0.2, (¢) 0.3 and (d) 0.45 and at amplitude a/ (b) 0.2, (¢) 0.3 and (d) 0.45 and at amplitude a/
H=14%; all photos are taken at the maximum H=14%; all photos are taken at the maximum
upstream position during one cycle of oscillation upstream position during one cycle of oscillation

positive phase angle means the intensifying of oscillation the cylinder would not experience sustained in-line
and thus indicates unstable feature, and a negative phase oscillation if permitted for free oscillation. In the region
means stable feature. The experimental results show that about 0.23=S1 =0.34, however, there exist two small
atabout St =0.22, the flow shows stable features; namely, ranges where phase angles are in positive values; namely
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(b) St =0.45

Fig.14. Simulated streamlines around B/H=1
cylinder under in-line oscillations at amplitude of a/
H=14%,; the streamlines are taken at the maximum
upstream position during one cycle of oscillation

(c) St =0.45 ,

‘Fig.15. Simulated streamlines around B/H=3
cylinder under in-line oscillations at amplitude of a/
H=14%; the streamlines are taken at the maximum
upstream position during one cycle of oscillation

there are possibilities for the cylinder to develop sustained
free oscillation there. Naudascher®! did report, in his
review on free in-line oscillation tests of rectangular
cylinders, that there appear two regions from Sz =0.2 to
0.33 for the square cylinder, where the cylinder may
oscillate freely at very small amplitude of a/H=4.5%, a
much smaller value than the present forced amplitude. It
should be noted that the numerical simulations, also of at
forced amplitude of a/H=14%, predict a more stable
features than experiments. To evaluate the effects of
oscillatory amplitude on the aerodynamic characteristics,
further simulations on much lower amplitudes are needed
in the future.

5. Visualized flow patterns

The three cylinders are made to oscillate in-line with
an incident flow at forced Strouhal numbers St =0.15, 0.2,
0.3, and 0.45 respectively and at an amplitude of a/
H=14% in visualization. Figs.11, 12, and 13 show the
visualized flow patterns for B/H=1, 2 and 3 cylinders
respectively, with all photos taken at the maximum
upstream position during one cycle of cylinder motion.
Parts of the visualized results were reported in Okajima et
al.l3,

We examine the photos of square cylinder at first.
From Fig. 11, it can be seen that, at $z =0.15, although a
pair of small symmetric vortices is formed right after
leading edges, it immediately switches to asymmetric
vortices as soon as it sheds from the trailing edges. The
shear layers forming the vortices are mainly from the front
separation points. The "wake swing" is evident, and the
width of wake is about four times of the height (H). From
Figs.11(b), (c) and (d), it can be seen that, for all the cases,
a pair of symmetrical vortex forms along the side
surfaces and rolls up to shed downstream symmetrically;
the symmetric wake finally develops into antisymmetric
vortex street; but with the increase of forced Strouhal
number, the symmetric part of wake keeps longer.
Furthermore, the width of wake becomes apparently
narrow as the St_of oscillation increases.

As well known, the flow passing a stationary cylinder,
either circular or rectangular cylinder, has an inherent or
natural tendency to form an asymmetric mode of vortex
shedding. On the other hand, when a cylinder is forced to

" oscillate in-line with the incident flow, the in-line motion

imposes a symmetric perturbation to the flow. The
interaction of these two effects is responsible for the
dynamic characteristics and flow structures. Whether or
not the symmetric modes of vortex shedding will prevail
in the wake depends on whether or not the effect of forced
perturbation on flow can overwhelm the inherent tendency
of flow. Therefore, at high ratios of St_/St, (or f./f,), the
wake tends to become more symmetric and more narrow.

For B/H=2 rectangular cylinder, Fig.12 shows the
visualized flow patterns at (a) St =0.15, (b) 0.2, (¢) 0.3, and
(d) 0.45. It is worthy noting that, as St /St of B/H=2
cylinder is much higher than that of square cylinder at the
same S, the wake from the former is much more
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symmetric than that of the latter at the same St. This
confirms the above discuss that at high ratios of S¢ /St (or
J.If), the wake tends to become more symmetric and more
narrow. Furthermore, Fig.13 shows the visualized flow
patterns from the B/H=3 rectangular cylinder vibrating
longitudinally at (a) St =0.15, (b) 0.2, (¢) 0.3, and (d) 0.45.
The same trend that the symmetry of vortex shedding
increases and the width of wake decreases with the
increase of S¢_is found here again.

It should be emphasized here that, although the two
distinct vortex shedding modes, i.e. antisymmetric and
symmetric shedding, appear only singly in two distinct
regions of excitation in the free-oscillation tests of circular
cylinder®, the performances of these two modes in forced
in-line oscillations of a rectangular cylinder are quite
different. In the present visualization, we found that, as Sz,
/St, increases, the change of flow structures from
antisymmetric to symmetric is in such a way that the
symmetric part of the wake increases gradually although
the far wake is still antisymmetric. More important is that
the wake flow is very unsteady, with the two vortex
shedding models always appearing intermittently. Even at
high forced frequencies, although the vortex shedding
keeps symmetric in the near wake, the intermittent
appearance of symmetric and antisymmetric vortex street
is observed in the middle or far wake.

6. Some remarks on the comparison of simulations and
experiments

As mentioned early, there do exist some discrepancies
between the experimental and simulated results as shown
in Figs. 2-7 and Fig.10, especially for lift forces. The main
reasons responsible for this discrepancies are supposed to
be the existence of intermittent appearance of symmetric
and antisymmetric vortex shedding and the existence of
three dimensionality in the experiments. From Fig.2, it can
be seen that the simulated C, values are much larger than
those of experiments in the range of about Sz, =0.25, just
where the vortices always shed alternately either in natural
shedding frequency (in NVS region) or in half of the forced
frequency (in AVL region) as shown in Fig. 5. On the other
hand, at range of Sz =0.25 where the vortices gradually
shift to shed symmetrically (in SVL region), the simulated
C, values are much smaller than the experimental values.
Checking Figs. 3 and 4 together with Figs. 6-and 7, we can
also observe this correspondences between the lift forces
and vortex shedding modes (Note the AVL region of B/
H=2 cylinder doesn't appear at simulations). That is,
within a range where the vortices are supposed to shed in
alternate or symmetric shedding mode, the simulated lift
forces tend to be larger or smaller than the experimental
values.

It was reported that the three dimensionality and the
turbulences begin to appear in the wake flow of a bluff
body at Reynolds numbers as low as Re=200. At Re=4 X
103 as in this experiments, the wake flow from an
oscillating rectangular cylinder is sure to be both three
dimensional and turbulent. On the other hand, in the

present numerical simulations, the flow at Re=1 X103 is
supposed to be two-dimensional and laminar. Under
certain forced frequencies, strictly symmetric flow
patterns appear in simulations, resulting in the almost zero
values of lift forces as shown in Figs.3, 4 and 5. Under
other conditions, the simulations predict singly and
uniformly alternate vortex shedding, resulting in a larger
values in lift forces. As an example, Fig.14 gives two
kinds of simulated flow patterns for square cylinder.
Furthermore, Fig.15 shows the simulated flow patterns of
B/H=3 cylinder, which are symmetric at (2)S¢,=0.15,
(¢)0.45 corresponding to the two bottom values of C,
curve, and antisymmetric at (b)0.3 corresponding to the
peak values. It is worthy noting that in the far wake of
Fig.15(a) and (c), the vortex shedding switches from
symmetric to antisymmetric.

In experiments, however, the vortex shedding behaves
much less extremely; it seldom sheds the strictly
symmetric flow patterns or singly and uniformly alternate
vortex street all the time. Instead, the visvalization shows
that the two vortex shedding modes, the symmetric and
antisymmetric, tend to appear and replace each other
intermittently in the wake, although the dominant mode
agrees well with simulations as in Figs. 5, 6 and 7. In
Figs.11, 12 and 13, we only show the dominant shedding
modes. Even at high forced frequencies, such intermittent
appearance and replacement of the two modes occur in the
middle or far wake. Therefore, the average values of
measured lift forces seldom change greatly and only
increase a little at very high forced frequencies.

For the flow around a rectangular cylinder under
transverse oscillation, it is confirmed that the three
dimensional simulations obtained much closer results to
experiments than the two dimensional simulations!!,
Now the same job is on the way for rectangular cylinder
under in-line oscillations. It is expected that three
dimensional simulations will have a much better accuracy
in approaching to experiments than the two dimensional
simulations.

7. Conclusions

Experimental measurements on the mean drags C,
and the rms lifts C, acting on a rectangular cylinder under
in-line oscillations, and the associated vortex shedding
frequencies S¢, and phase angles of drags to cylinder
displacements ¢, are reported in this paper. Also shown
are the visualized flow patterns of the wake flows. It is
shown that both C, and C,, don't have sharp changes which
are experienced by a circular cylinder under in-line
oscillation. Instead, the C » values only show some small
increases corresponding to the AVL region, and C, valies
increase a little at very high forced frequencies.

By spectrally analyzing the experimental lift signals,
the vortex shedding frequencies are obtained. It is found
that, as S¢_increases, the wake flow can be divided into
NVS region, AVL region and SVL region. The vortices can
shed in different combinations of natural shedding
frequency f, and forced oscillatory frequency f, , and can
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easily locked into AVL and SVL regions. The
synchronization range includes both AVL and SVL and is
much wider than that of a circular cylinder.

The effects of in-line oscillations on the vortex
shedding can be expressed by St /St . The higher the value
of St /St, is, the more predominant the symmetric mode
will be in the vortex shedding. However, as shown in
visualization, the wake flow of a rectangular cylinder
under in-line oscillations is characterized by the
intermittent appearance of the symmetric and
antisymmetric vortex shedding. Such characteristics,
together with three dimensionality, are supposed to be
responsible for the discrepancies between the
experimental and simulated lift forces. In two-dimensional
simulations, either strictly symmetric flow pattern or
alternate vortex shedding is predicted. Therefore, within a
range where the simulated vortices shed in alternate/
symmetric shedding mode, the simulated lift forces tend to
be larger/smaller than the experimental values.
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