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A fractional-derivative 5-parameter hysteretic model is proposed to simulate the fre-
quency dependent behavior of a viscoelastic (VE) damper. The development of the
model is based on experimentally observed dynamic characteristics of VE dampers. A
new viscoelastic damper has been fabricated, which is simple and robust in construction.
The proposed model is validated by dynamic tests on this new damper and a good agree-
ment between predicted and experimental results is obtained. Numerical algorithms for
the solution of the force-displacement relationship in both the frequency domain as well
as in the time domain are presented. Furthermore using the Kelvin fractional deriva-

tive model, response analysis of viscoelastically damped single-degree-of-freedom system

(SDOF) has been carried out in the time domain as well as in the frequency domain.
Finally, the problems associated with memory parameter of VE material and obtaining
the true poles for response analysis have also been addressed.
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1. Introduction

Viscoelastic dampers are used for energy dis-
sipation. These dampers are employed in tall
buildings to suppress wind and earthquake in-
duced vibration. Nowadays very reliable and
durable viscoelastic materials are available, some
of the VE material even have temperature inde-
pendent mechanical properties. This makes the

VE damper very attractive for vibration control.

Since energy dissipation in such dampers is due
to deformation of the VE material, this mecha-
nism of energy dissipation minimizes the mechan-
ical wear and tear of the damper. This makes
the VE damper almost maintenance free as com-
pared to conventional oil dampers. Keeping these
points in mind a new VE damper has been fab-
ricated, which is simple and robust in construc-
tion as compared to other VE dampers, used by
other reseachers, such as Markis® and Kasai¥.
The device configuration, presented in this pa-
per exploits the energy dissipation capability of
semi-solid type viscoelastic material, in an im-
proved manner than the configuration studied by

: Practional derivative, Frequency-dependent behavior, Num. algorithm

Markis® and Kasai?). This new damper can be
used not only for retrofitting of bridges against
earthquake, but also as a discrete energy dissipa-
tion device for any structure.

Viscoelastic materials usually consist of polymers
or glassy substances and have the property of dis-
sipating energy in the form of heat when sub-
jected to deformations. Damping arises from the
relaxation and recovery of the polymer network
after it has been deformed 13 7).

It has been recognized that the mechani-
cal properties of viscoelastic material depend
strongly on the excitation frequency. Therefore
the mechanical properties of the damper are de-
pendent on the natural frequency of the struc-
ture as well as on the frequency content of the
excitation. This frequency dependent property
of the viscoelastic damper provides an interface
between the external excitation and the dynamic
system. Furthermore, the frequency dependent
stiffness and damping adds an extra parameter
to calculate the damped natural frequency of the

structure 16),

At present, viscoelastic models popularly ap-
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plied in structural analyses are to relate time-
dependent stresses to time-dependent strains
through a series of time derivatives acting on the
stress and strain fields 1. The major drawback
of this approach is that a large number of deriva-
tive terms, acting on stress and strain, are re-
quired to model the frequency dependent stiff-
ness and damping properties for many viscoelas-
tic materials. This complicates the process of
performing a least square fit of the model to the
data. '

The robustness of passive and active control
schemes depend on the degree of uncertainty in-
volved in the estimation of structural parameters.
This warrants the need of accurate mechanical
models for discrete energy dissipation devices.
To construct a model for the frequency depen-
dent mechanical property of viscoelastic mate-
rial, a fractional derivative model (FDM) has an
advantage over the commonly used linear inte-
ger models. The attractive features of fractional
derivative models are as follows:

e Fractional derivative model has its founda-
tion in accepted molecular theories govern-
ing the mechanical behavior of viscoelastic
materials.

e The model satisfies the second law of ther-
modynamics and predicts the stress-strain
hysteresis loops for VE materials accurately.

e This viscoelastic model uses few parameters,
thereby leading itself to straight forward and
accurate least-square fits to measured me-
chanical properties 1.

The above mentioned features motivate the use of
FDM for the response analysis of viscoelastically
damped structures.

The objectives of this study are as follows:

e To develop an accurate model for the new
damper configuration based on the experi-
mental data.

e To solve the problems associated with the
prediction of the force displacement relation-
ship in the frequency domain as well as in the
time domain.

e To address the problem associated with the
response of a viscoelastically damped single-
degree-of-freedom system in the frequency
domain as well as time domain.

This paper has been organised in the sequence

of the above stated objectives.

Mobile Shaft
VE Material

90 mm | |e&—

=0

~ Fig. 1 Viscoelastic Damper
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2. Fractional Derivative Model

In this study, a five-parameter(G,b,c, e, )
fractional derivative model has been used to ex-
press the time dependent stress 7(t)-strain ~y(¢)
relationship which is as follows:

7(t) + bDPr(t) = Gy(t) + cD%y(t) (1)

where G, b, ¢, o and § are empirical parameters.

Definition

Fractional differintegration is an operator that
generalizes the differentiation or integation to
non-integal order. A commonly used definition

by Liouville is as follows®):
_dif@t)
DHFO) = 2y

1 f ('r
I(n - q) din [/ (t—7)1~ (£ — 7)9—n+L ar]
(2)

where I' is a Gamma function.
In the theory of viscoelasticity, we are concerned
with the influence of the entire response history
on the current response. The lower limit (a)
should be —co. However, if we assume f(t) = 0,
t < 0, then _ DY is identical to ¢Dj. Hence a
is usually taken as zero.

An analogy to understand what is a fractional
derivative is as follows 1),
For elastic material:

7= ky(t) = kD°(t) 3)

For purely viscous material:
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= k88 _ ki @)
Eq.(3) and Eq.(4 ) are the well known Hooke’s
law of elasticity and Newton’s law of viscosity,
respectively. Therefore, a visco-elastic material
which has a property in between elastic and vis-
cous material could be represented by D%, where
« lies between 0 and 1, which is a fraction.

The application of fractional derivative to VE
material was first proposed by Gemant © way
back in 1934. Recent researches 1) show that the
fractional derivative of order 0.5 does arise nat-
urally in the shear stress-strain relation of poly-
meric solids with no crosslinking, with some re-
strictions. Similarly, a related molecular theory
taking into account the intermolecular hydrody-
namic forces is developed by Zimm 7). These
theoretical findings provide a link between the
microscopic behaviour of real materials. The at-
tractive feature of the fractional derivative oper-
ator is the ability to vary the degree of its fre-
quency dependence through the choice of « .

3. Outline of Experiments

3.1 Viscoelastic Damper

The construction of the VE damper is shown
in Fig.(1). This damper allows uniaxial shear-
ing of VE material. The surface of the moveable
shaft has been roughened by threadings. This ar-
rangement is enough to provide an effective bond
between the shaft and the VE material. This
roughness is confined to the middle third of the
shaft’s length. The rest part is smooth thus al-
lowing the shaft to move freely in and out of the
housing. The height of the thread is 3mm. The
other important dimensions of the damper are
shown in Fig.(1). Semisolid type VE material
has been filled in the main housing. The shear
deformation of the VE material trapped between
the roughened shaft and the housing provides en-
ergy dissipation.

A schematic representation of the testing ar-
rangement is shown in Fig.(2). The mobile shaft
of the VE damper is attached to the actuator,
and the other end of the damper is attached to
a load cell (mounted on rigid support). Dynamic
tests on the viscous damper were conducted by
imposing sinusoidal motions of specified ampli-
tude (1 to 4 mm) and frequency (0.1 Hz. to 5 hz.)

LOADCE L

ezl

F 8 0 B 4 20 R o8 8 0 0 g g

----------------------

ACTUATOR

Fig. 2 Experimental Setup

to the horizontally mobile shaft of the damper
and by measuring the force needed to maintain
the motion.

3.2 Observed Mechanical Properties

The variation of mechanical properties with
the excitation frequency is shown in Fig.(3) and
Fig.(4). Fig.(3) shows that the damping de-
creases with frequency. The hysteresis plots from
Fig.(7) to Fig.(9) show that the area of loop
decreases with increase in the frequency. This
indicates the reduction in energy-dissipation ca-
pacity, with the increase in the frequency. The
stiffening of the damper with increase in the fre-
quency is shown is Fig.(4). Similiar trends are
observed in force responses shown in Fig.(10) to
Fig.(12).

It should be noted that the reaction force is
the force needed to maintain the motion, whereas
the force imposed by the actuator differs from the
reaction force by the inertia force of the moving
part. This effect becomes significant with higher
frequencies.

4. Development of Mathematical Mo-
del for Viscoelastic damper

Processing of Experimental Data

The recorded force-displacement loops had an
almost precise elliptical shape (see Fig.(7) to
Fig.(9)). These loops were used in obtaining the
frequency dependent properties of the damper.
The procedure is as follows:

Under steady-state conditions, the force and
displacement are

u = Up sin(wt) (5)

P = Pysin(wt + 6) (6)
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Fig. 4 Variation of Storage Stiffness with Fre-
quency

where Py is the recorded amplitude of the force,
Up is the recorded amplitude of displcement, w
is the frequency of motion and § is the phase
difference. The energy dissipated in a cycle of

steady-state motion is
Wy = }{ Pdu = 7 sin 6PyUg )

Physically Wy is the area of hysteresis in one cy-
cle. Furthermore, Eq.(6) may be written as

P = K Uysinwt + KsUg coswit . (8)

where

Kl=%cosé,K2=%sin5 (9)
K, and K> are the storage stiffness and loss stiff-
ness of the damper respectively. The quantity
Py/Uy = Ky represents the elastic stiffness. It
should be noted that the two parts of Eq.(8) rep-
resent the in-phase and 90° out of phase parts of
the force respectively. Accordingly, using Eq.(5)
and its time derivative (velocity),

K.
P=Ku+ —:—u (10)

The quantity Ks/w is the damping coeflicient of
the damper,
K,

C === (11)
w
Returning to Eq.(7) and using Eq.(9)
Wa
Ko=——= 12
2 U (12)

To get a better understanding of energy dissi-
pation capacity of the VE damper from struc-
tural engineering point of view, the variation of
damping with the frequency is plotted in Fig.(3).
These damping coefficent are derived from loss
stiffness as per Eq.(11). Using Eq.(5) to Eq.(12)
to extract the frequency-dependent properties of
the damper from the measured quantities Fy, Uy
and Wy. The experimental values of storage stiff-
ness and loss stiffness are plotted in Fig.(4) and
Fig.(6) (shown by dotted points) respectively.
The strong dependency of mechanical properties
of the damper on the frequency is evident.

Fractional Derivative Modeling :

The mathematical model of the VE damper
is written in a form analogous to that of the
stress-strain relationship of the viscoelastic ma-
terial. This is based on the assumption that the
VE material is primarily subjected to shearing
action while the shaft moves in horizontal direc-
tion. The force-displacement relationship in the
horizontal motion is expressed as

P(t) + bDPP(t) = ku(t) + cD*u(t)  (13)
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In the above equation P and u are force and dis-
placement respectively.

Taking the Fourier Transform of Eq.(13) and
assuming a zero initial condition. The force-

displacement relationship becomes:
P(w) + b(iw)’ P(w) = ku(w) + c(iw)®u(w) (14)

From Eq.(14), the complex stiffness can be de-

duced as '

k + c(iw)®

1+ b(iw)?
Substituting i* = cos(0.57a) + isin(0.57«)

into Eq.(15), then separating real and imaginary

parts of complex stiffness we get

~ Storage Stiffness:

k(1 + cw® cos(0.5ma) + bw” cos(0.5m3))
1 1 bwB cos(0.578))2 + (bwP sin(0.578))2
kcbw® 8 cos 0.57 (o — )
AT 508 cos(0.579))Z + (6P 5in(0.575) )2
(16)

K* = (15)

Loss Stiffness:
Ky — k(14 cw®sin(0.5ma) — bwP sin(0.573))
27 1 + bwP c0s(0.578))2 + (bw? sin(0.573))2
kcbwotP sin 0.57(a — )
+ (1 4 buwh cos(0.570))2 + (bw? sin(0.573))?
(17

Parameter Estimation

To estimate the parameters involved in the ex-
pression of complex stiffness, a nonlinear least
square fit has been used on the observed ex-
perimental values of the storage and loss stiff-
nesses. A powerful alogrithm for least square
fit, known as “Leverberg Marquart” alogrithm
has been used herein, which takes into account
the partial derivative of the involved parameters.
These fitted plots of storage stiffness and loss
stiffness is shown in Fig.(5) and Fig.(6) respec-
tively. This model fits very well, for the frequency
range of 0.1 Hz. to 5 Hz. to the experimental re-
sults. _

The values of the estimated parameters are:

k =001, ¢ = 00193, o« = 1.0, b = 0.48 and
B = 0.6. Hence complex stiffness of the damper
takes the form
. 0.0140.0193(iw)
= - 306 (18)
1+ 0.48(iw)

The force-displacement relationship in terms of

Storage Stiffness
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Fig. 5 Fitted Storage Stiffness of VE Damper

Loss stiffness
0.12

0.1F ' —

- e | ®

0.08 }

0.06

Loss Stiffness

0.04 [

0.02 |

0 10 20 30

Frequency (Rad/sec)

Fig. 6 Fitted Loss Stiffness of VE Damper

time derivative becomes
P(t) +0.48D%C P(t) = 0.01u(t) + 0.0193Du(t)
(19)

5. Prediction of Force-Displacement
Relationship

In this section, the analytical schemes, to.solve
the force-displacement relationship developed in
section(4) have been detailed, for the analysis in
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the frequency domain as well as in the time do-
main.

5.1 Laplace or Frequency Domain

Generally, viscoelastic stress analysis problems
become more complicated due to the involvement
of the time derivative of variables. The time vari-
able can be removed by employing the Laplace
Transform. When a solution for the desired vari-
able has been found in terms of the Laplace
Transform variable s, the inverse Laplace trans-
formation yields the desired solution in the time
varible ¢ for the time dependent behavior in the
viscoelastic problem. This systematic method
is known as the Elastic-Viscoelastic Analogy or
the ‘Correspondence Principle’®®. A similiar ap-
proach can be used in the frequency domain.

Due to the above mentioned principles, the
numerical schemes in the frequency domain are
much more convenient to use. Again the complex
stiffness given by Eq.(15) can be broken into two
parts similiai to Eq.(9). Then Eq.(15) will take
the form K* = K;(w) + 1K2(w) which represents
the amplitude and phase angle of the steady-state
force in the damper for a harmonic displacement
input of unit amplitude. Accordingly, the time
history of force is expressed as:

P(t) = % [ °:o (Ko (w) + iKa(w)] 8(w)e!du

(20)
where %(w) represents the Fourier Transform of
the imposed motion. The computation of the
force is thus obtained by the Discrete Fourier
Transform (DFT) approach in combination with
Fast Fourier Transform (FFT) algorithms (Velet-
sos and Ventura) 4.

5.2 Time Domain

Rewriting the force-displacement relationship
of Eq.(19)

0.48D°%8 P(t) = 0.01u(t) + 0.0193Du(t) — P(t)

(21)
In evaluating DPP(t), P(t) is needed, which
is unknown. Therefore, an iteration process is
needed 8). Moreover to evaluate the term DB P(t)
numerically, Oldham  has given certain quadra-
ture formulae. The quadrature scheme is diss-
cussed in detail in the section(7.1.1) of this paper
i.e. Response of VE damped SDOF system.

Experimental
————— Analytical
0.3

- B

s N
o // wa
- .
2 %
p N
P

Force (t-f)
o
\{
N

=,
%

-0.3
-4 0 4
Displacement (mm)
Fig. 7 Hyteresis loop 1 Hz
Experimental
————— Analytical
0.4

Forcigz (t-f)

0
Displacement (mm)

Fig. 8 Hyteresis loop 2 Hz

6. Comparison of Results

The model fits very well to the experimentally
observed values of storage stiffness and loss stiff-
ness as shown in Fig.(5) and Fig.(6) respectively.
Moreover Fig.(7) to Fig.(9) demonstrate good
agreement between the analytical prediction and
recorded force-displacement loops. Fig.(10) to
Fig.(12) also show good agreement for the force
response in the tests on the VE damper. The
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Fig. 9 Hyteresis loop 3 Hz

force-displacement relationship corresponding to
1 Hz, 2 Hz and 3 Hz has been analysied to pre-
dict experimental results. This analysis has been
conducted in the frequency domain.

Looking at the hyteresis loop from Fig.(7) to
Fig.(9), it is to be noted, that the major axis of
these ellipitical loops rotates towards the force
axis as the frequency of excitation increases from
1 Hz to 3 Hz. This indicates the stiffening effect
of VE material with the increase in the frequency.
It is clear from Fig.(7) to Fig.(9) that the area of
hystersis loop decrease with the increase in the
frequency, this indicates that the energy dissi-
pation capacity of the VE material is decreased,
with the increase in the frequency of excitation.

Therefore, it can be concluded that the pro-
posed b-parameter fractional derivative model
not only fits the observed experimental values of
storage stiffness and loss stiffness in a good way
but also accurately predicts the hyteresis of the
damper used herein.

7. Response of VE Damped Single
Degree of Freedom System

In this section of this paper the salient features
of fractional derivative approach in calculating
the response of viscoelastically damped system
has been discussed with the help of a numerical
solution. The numerical analysis has been carried

Experimental
————— Analytical
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:/’-/’—:

e
=
P ——
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-0.3
1 2 3 4
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Fig. 10 Force Response 1 Hz

out in the time domain as well as in the frequency
domain. The problems associated with numerical
solution and their remedies are discussed.

7.1 Numerical Scheme

Adopting the well known Kelvin’s model, the
constitutive relationship can be expressed as:

o(t) = GD%(t) + bD%¢(t) (22)

where G, b,and « are the constitutive parame-
ters. Now, similiar to the constitutive Eq.(22) the
force-displacement relationship of the VE device
can be expressed as f(t) = kz(t) + bDz(t) =
k*z(t); which renders k* = k + bD“®. Let
the equation of motion of a SDOF system be
mi+k*z(t) = F(t). This equation in a derivative
form becomes:

mD?¢ + bD% + kx = F(t) (23)
Taking the Laplace Transform of Eq.(23)
(ms? + bs® + k) X (s) = F(s) (24)

The numerical analysis is carried out on
SDOF system defined by Eq.(23) for sinusoidal
excitation(sin 2¢). Numerical values taken for
analysis are: mass(m) = 1.0, k = 1.0, b = 0.1,
a=0.5, h = 0.5 sec, 2=1.0 rad/s.
(1) Time Domain

To facilitate the incorporation of nonlinearity
a numerical step-by-step solution technique has
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Fig. 11 Force Response 2Hz

to be developed. The acceleration can be approx-
imated by a central difference as follows:

a:(t) = %[x(t + h) —2z(t) + z(t — h)]  (25)

where h is the time step size used in the numer-
ical scheme. Let x, be the numerical solution of
z(t = nh) at the n** step. Then the numerical
representation is

1

fi;,n = ;L?[{I,‘n_*_]_ — 2.7/'n + xn-—l] (26)

The typical term in Eq.(23) is D%z which is eval-
uated by the quadrature formulae given by Old-
ham %. Now Dz can be expressed in a quadra-
ture form as:

Dgp = Zw,x], 0<a<l ~ (27)
7=0

where wg, wn—; and w, are weights 5), n = total

no. of time steps ; h = time step size. It is

to be noted that the subscript j is zero at the
t step and takes the value n at the initial step

of calculation. Therefore, for middle terms the

value of j should be used accordingly.

Memory Parameter '

It is obvious, that the evaluation of D%z given
by Eq.(27) at a particular step, recalls all the
previous steps, which is commonly known as the
memory characteristic of the VE material. Now,
if the time step size is small, or the structure has
many dampers, the computational time becomes

large. To overcome this problem an algorithm
proposed by Koh 3, which facilitate as to how
many previous step are to be recalled as

N
D%z, = P sz]a:n -N+j, 0<a<1l (28)

7=0
where at nt* stép; N = no. of previous steps to
be recalled; wo, wy—; and wy, are weights 1), Dif-
ferent researchers have their own rule of thumb
to estimate the number of previous step to be re-
called ¥. We have used the no. of step to be
recalled(N) by assigning the relative error and

using a formula:

N =~ ..a_z.

2¢,

where ¢, is a relative error 9. So for @=0.5 and
1% relative error, renders N =12. Now the mod-

ified weights after incorporating N are as follows:

(29)

wo = -1:(2—1_55[(N — 1)l _ Nl-@
+(1~ a)N~°]
_ 1
“n= TR " a)
Wn—j = ml_?)[(j +D)TE -2+ (G- 1)1
1<j<N-1

Substituting the values of Eq.(26) and Eq.(28)
into Eq.(23),
N

b
2(3cn+1 2%+ xn—1) + ngxg—i-kxn = f(nh)
7=0
| (30)
This renders a multistep numerical scheme
Wy 1%np1 = f(nh) — Zw]xj (31)

Fig.(13) and Fig.(14) show the transient and
steady state response of the VE damped system
respectively. Results obtained by the time do-
main analysis are in good agreement with the
laplace domain analysis as shown in Fig.(13) and
Fig.(14).

(2) Laplace Domain

From Eq.(24 ) the transfer function of the
system H(s)=(ms? + bs* + k)1, since X(s) =
H(s)F(s), taking the inverse laplace transform
of X(s) will give the time history of response
X(t). The Laplace domain solution of the sys-
tem requires solving the characteristic equation
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Fig. 12 Force Response 3Hz
expressed as
$24+01s"°+1=0 (32)

Since Eq.(32) involves a fractional power to s,
for mathematical simplicity, it is to be converted
into an integer. Therefore Eq.(32 ) is written as
s*+252-001s+1=0 (33)

True System Characteristics
It should to be noted that in writing Eq.(33),
the order of the system has been increased and
thus the solution will involve some “false poles”
related to the added higher order of s due to the
transformation from Eq.(32) to Eq.(33). One of
the conventional method to filter out the false
poles is as follows. When the poles of the sys-
tem are potted on the complex plane,then the
imaginary axis represents a region of mere sta-
blity, the left half of the plane is the region of
asymptotic stablity. Therefore, the poles with
the negative real part should be the stable poles;
but in the course of mathematical manipulation
sometimes many more poles satisfy this criteria,
all of which are not true representatives of the
system. It is the designer’s skill to seperate the
false poles and choose the correct ones. One of
such method is to estimate the undamped natu-
ral frequency of the system without VE dampers,
then calculating the stiffness and damping of the
VE damper corresponding to the undamped nat-
ural frequencies of the system. Now one can get

an approximation of damped natural frequencies
of the system by adding the stiffness and damp-
ing of the VE damper to the system without VE
damper. The poles, out of the filtered ones ( by
the conventional methods)?), which are close to
this approximation of damped natural frequen-
cies will be the right poles. The poles for the
current problem is obtained as

s = —(.0353443 £ 1.03537: (34)

Now, the inverse Laplace transform of Eq.(24),
with the poles given by Eq.(34) gives the time
history of displacement response under sinusoidal
excitation starting from ¢ = 0 with the zero initial
condition as

X (t) = 9.489¢ %9353 ¢05(1.035¢ + 0.768)
—9.824 cos(t + 0.8031252) (35)

The response is plotted in Fig.(13) and Fig.(14)
along with the solution obtained by the time do-
main analysis.

8. Conclusion

It has been concluded that the five parameter
fractional derivative model accurately models the
mechanical properties of the viscoelastic damper.
The new viscoelastic damper configuration works
very well to exploit the energy dissipation ca-
pacity of the VE material. The problems as-
sociated with the development and calibration
of the mathematical model for VE damper are
addressed extensively. Moreover the numerical
scheme in the time domain and in the frequency
domain has been disscussed. It is found that
the frequency domain analysis is more conve-
nient than the time domain analysis for predic-

~ tion of the force-displacement relationship of the

damper. The problems associated with the re-
sponse of viscoelastically damped single-degree-
of-freedom-system in the time domain, such as
the memory parameter, and in the frequency do-
main such as the eliminating the spurious poles
are investigated and some remedies are proposed.
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