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The mode localization phenomenon in the nonlinear two~degree—of-freedom system is
studied in this work. The perturbation method is employed to obtained the solutions
of the nonlinear system for the free vibration case and harmonically forced vibration
case. The results from both free vibration analysis and forced vibration analysis show
that when the mode localization takes place, the vibration amplitudes of each subos-

cillator are not the same. The steady state solutions are triggered from non-localized

mode to localized mode at some criteria of initial conditions and structural parameters.
The frequency response curve show the bifurcation solutions at the region where jump

phenomenon exists.
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1. Introduction

The periodic system which consists of identical
subsystems repeated along its coordinates may
exhibit a phenomenon known as mode localiza-
tion when there are variations in their periodi-
city. Hodge V) firstly introduced this phenome-
non from a solid state physics into an acousti-
cal research interest. Following by a number of
researchers 2)3):4):5), the phenomenon has been
extensively studied in many aspects because of
its distinct and important characteristics. It has
been found that the presence of small quantity
of imperfections in their periodicity can lead to
drastic changes in the dynamics of the system
and the vibration modes become localized. When
this phenomenon takes place, the energy injected
into the system may not propagate along the co-
ordinates but it is confined near the sources of
external disturbance.

In addition to the localization phenomenon in
linear systems due to structural irregularities,
Vakakis ©)7) showed that the structural nonli-
nearity can be the cause of “nonlinear mode local-
ization” . It was found that the origin of nonlinear
mode localization in the nonlinear periodic sys-
tem is the amplitude dependence of the response

nonlinear dynamics, mode localization

frequency of the nonlinear system.

In engineering applications, the periodic struc-
tures are frequently encountered. One of the sim-
plest example of periodic structures is the two
identical oscillators connected together by a cou-
pling spring. This simple and frequently used
model, for example the model of bridge towers ®),
may be suspected to have localized mode in the
existence of mistuning frequencies. Moreover, in
some cases, the system may vibrate with large
amplitudes so that the geometrical nonlinearity
becomes more significant. The effect of nonli-
nearity can cause the assumed system with iden-
tical natural frequency subsystems (tuned sys-
tem) becomes the system with different natural
frequencies subsystems (mistuned system).

As it has been pointed out that the igno-
rance of frequency mistuning in periodic struc-
tures may lead to completely erroneous results, it
is particularly important to understand the local-
ization phenomenon and to study the possibility
of the occurrence of this phenomenon. There-
fore the attempt of this paper is to study the
mode localization in the nonlinear two-degree—
offreedom system. The primary objective is to
investigate the causes and results of mode local-
ization comprehensively by using the simple mo-
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dels. The discussions on time domain response
of both free vibration and forced vibration which
were not mentioned in previous work %) will
be done in this paper in order to support the in-
terpretation of the phénomenon. This work also
reveals the phenomenon in harmonically forced
vibration case in which the frequency response
curves are bifurcated in localized mode.

The two-degree—of-freedom systems consist-
‘ing of two subsystems with geometrical nonlinear
property are examined for their vibration con-
finement phenomenon. The free vibration analy-
sis and the harmonically forced vibration analy-
sis will be performed by using the multiple scales
method 9. The advantage of this perturbation
method over the direct integration of the equa-
tions of motion is that it intermediately provides
understanding the cause of this phenomenon.

The organization of this paper is separated into
two main parts. Section 2 is the study of free
vibration. The undamped system is selected to
study the steady state response. The numerical
examples for several initial conditions are shown,
in comparison with that of the linear system.
The criteria for occurrence of localization are dis-
cussed by considering the initial conditions and
structural parameters. In section 3, the damped
system of harmonically forced vibration is stud-
ied. In addition to the response in time domain,
the frequency response which show the bifurca-
tion is obtained for localized mode.

2. Free Vibration of the Nonlinear
Two—Degree—of-Freedom System

2.1 Formulation

The system studied in this section consists of
two identical single—degree—of-freedom suboscil-
lators connected together by means of a weak
spring having stiffness k., as shown in Fig. la.
Each suboscillator has mass m and is attached
to rigid support by a massless spring having a li-
near stiffness, k;, and a nonlinear hardening type
stiffness of cubic order, & The linear natural fre-
quency of each oscillator is w = (ks/m)% The
equations of motion are, then

. & k '

&+ wla; + —n;a:? + Ec(x, — -'”(i+1)) =0, 1=1,2
: 1)

where 2941 = 2; and (-) denotes differentiation

with respect to time, t. For a weak nonlinear

(b)

Fig. 1 The system configuration. a) Free vibration
case, b) Harmonically forced vibration case.

system, i.e. &/m is small compared with w?, the
solutions of the above nonlinear equations can be
obtained by perturbing the response of the corre-
sponding linear system. The method of multiple
scales is employed to the problem in order to ob-
tain a uniformly valid, first order approximation
to the dynamic response of the system.

To the limit of weakly nonlinear and weakly
coupling cases, the nonlinear term and coupling
term can be scaled as

= €x

and — =€k, (2)

K-8
Ko

where ¢ is a small dimensionless parameter.
Therefore the equations of motion in Eq. 1 be-
come

Eitwieten ardew’k(z;—

2.2 Steady state solutions

The solutions of Eq. 3 are approximated in
the following form by neglecting the higher or-
der terms of «.

zi(t;€) = zio(To, T1) + €xi1 (To, Th), i = 1,2 (4)
where T}, = €"t (n = 0, 1) represent different time
scales. Thus, instead of determining z; as a func-
tion of t, we determine z; as a function of Ty, T}
as Eq. 4. We change the independent variable
in the original Eq. 3 from ¢ to Ty, Ti. Using the
chain rule, we have :

d

a = DO + €D1 (53.)
d2
E:E = D(?) + 2€DOD1, (5b)
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where D,, = /0T, (n = 0,1). Substituting Eq. 4
and Eq. 5 into Eq. 3 and equating the coeflicients
of like powers of ¢, one obtains

Order ¢°
D3z 4wz =0 (6)
Order ¢
Dizyy +wizy =
——2D0D1$2‘0 — w20l56?0 - w2k‘(mio - w(i+1)0). (7)
The solutions of Eq. 6 are
x50 = a;(T1) cos(wTo + Bi(T1)), (8)

The first order approximate solutions of Eq. 1
are in the harmonic form as in Eq. 8 where «;
and f; represent amplitude and phase of the mo-
tion, respectively. The unknown a; and f§; are
obtained by substituting Eq. 8 into Eq. 7, elimi-
nating “secular terms” and grouping the sine and
cosine terms.

,  wk

a; = _2_‘a'i+1 Sin(ﬁi-)-l - ﬂl) (9)
3 wk a; '
gl = gwaa? + _2_(1 — a+'1 cos(Bi+1 — B:)),(10)

() denotes differentiation with respect to 7.

Considering Eq. 9, it can be shown that the
summation of a? is constant, af+af+1 =c,
which implies that the energy during vibration
is conserved.

In general, at the steady state of free vibra-
tion of the nonlinear multi-degree—of-freedom
system, the amplitudes of each suboscillators are
not constant because vibration energy transfers
between the coupling subsystems during their os-
cillations. For this reason, the commonly as-
sumed conditions at steady state as a; = 0 may
not be employed properly to this problem. How-
ever, the constant steady state amplitudes can
be considered for the limit case of a system with
zero coupling stiffness. For the case of k = 0,
the system becomes uncoupled and Eq. 9 yields
a; = 0, implies constant steady state amplitude.
Integrating Eq. 10 results

3
Bi = egwaaft + Bio
= Bt + Bio- (11)

The first term of Eq. 11 is a function of time, con-
sequently it modifies the frequency of the system
from linear value, w, to w4 B7. Then the fre-
quency difference between two nonlinear single—

degree—of-freedom system may be written as

(12)

From Eq. 12, it can be seen that two identi-
cal nonlinear single-degree—of—freedom systems
may contain different vibration frequencies for
different vibration amplitudes. After connect-
ing two nonlinear single-degree—of-freedom sys-
tem together, each suboscillators may remain vi-
brating with frequencies close to their uncou-
pled frequencies, if the coupling is small enough.
Consequently, the weakly coupled nonlinear two—
degree~of-freedom system may consist of two
suboscillators which have different frequencies.
It has been studied that, in the limit of small
coupling of a periodic system, the system with
frequency detuning may show mode localization
phenomenon. The localization phenomenon in
nonlinear system will be examined numerically
in the following examples.

3
ﬁ;‘+1 - B =Aw= fg‘“’o‘(a@?ﬂ - a?).

2.3 Numerical examples and discussions

The preceding study of nonlinear mode local-
ization is applied to numerical examples in this
section.

Firstly, Eq. 9 and Eq. 10 are integrated numer-
ically to obtain a; and B;. The response z; can
be subsequently calculated from Eq. ??. The pa-
rameters of the system are selected as k; = 1.0,
& = 0.033,k, = 0.01,¢ = 0.001 and w = 1.0.
Moreover, the analysis of linear system (& = 0)
is performed together for the comparison. The
initial conditions are considered for two example
cases; for the first case, 21(0) = 1.0, £,(0) = 1.0,
22(0) = 1.0 and @2(0) = 2.0, and for the second
case, all the initial values are kept the same as
the first case except £2(0) = 3.0.

The response amplitude a; and phase (i are
shown in Figs. 2- 4. The linear responses for
two cases of initial conditions are similar so that
only the results of the second case are shown in
Fig. 2. The linear responses show non-localized
vibration mode of two oscillators. The energy is
exchanged freely between two oscillators during
vibration so that their amplitudes vary within
the same range. The responses of nonlinear sys-
tem are shown in Fig. 3 for the first set of ini-
tial conditions and in Fig. 4 for the second one.
In Fig. 3, the system possesses non-localized vi-
bration mode and the energy is exchanged be-
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Fig. 2 Free vibration response of the linear 2DOF
system with the second case of initial condi-
tlons. a) a;, b) G;: ., 1-st suboscillator;
......... , 2-nd suboscillator.

tween two oscillators during vibration. Unlike
the linear system, the average values of §; of the
nonlinear system do not remain constant, non-
zero gradient, but increase with time, implying
the increase of frequency of nonlinear vibration.
The localization phenomena are shown in Fig. 4a
where one of the oscillator vibrates with larger
amplitude than the other. Fig. 4b shows that
the gradient of B; with respect to time is differ-
ent between two oscillators. The difference of
gradient means that two oscillators contain dif-
ferent vibration frequencies. The different fre-
quencies lead a perfect periodic system to be a
detuned system and the mode localization takes
place. These numerical results are corresponding
to the discussions in the preceding section.

In Fig. 5 and Fig. 6, the possibilities of oc-
currence of localized mode are shown for var-
ious cases of initial conditions. The abscissas
are the initial difference between frequency of
two suboscillators, Awy, calculated from initial
conditions. The ratio of average value of ampli-
tude, @z/a; and the difference of average value
of frequency , Aw, at steady state are shown in
Fig. 5 and Fig. 6, respectively. For small Awy,
or small difference of initial state of two subos-
cillators, the localization mode does not exist as
can be observed from Fig. 5 where both subos-
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Fig. 3 Free vibration response of the nonlinear
2DOF system with the first case of initial con-
ditions. a) a;, b) Gi: , 1-st suboscilla-
[ 0] SN , 2-nd suboscillator.
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Fig. 4 Free vibration response of the nonlinear
2DOF system with the second case of initial
conditions. a) a;, b) fG;: , 1-st subos-
cillator; -......_. , 2-nd suboscillator.

cillators have the same average steady state am-
plitudes, @/a; = 1. In this case there is no dif-
ference of average value of frequency at steady
state, Aw = 0 as shown in Fig. 6. When Awp
increases to an onset value, Awy,., the steady
state solutions transform from non-localized vi-

—568—



R e
~

005,501 0.15 02

Ocr

Amolco

Lol

Fig. 5 Initial state frequency difference-ratio of ave-
rage steady state amplitude relations
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Fig. 6 Initial state frequency difference—average
steady state frequency relations

bration modes into localized modes. ay/ay bi-
furcates from one and A® increases from zero at
point Awg,,.

The effects of nonlinearity, «, and coupling
stiffness, k, on the degree of localization are
shown in Fig. 7. The degree of localization is pre-
sented in term of the ratio of an average value of
amplitude at steady state, @z/d;, obtained from
several combinations of nonlinearity and coupling
stiffness for the initial conditions of the second
case. For the system with small nonlinearity, the
localized mode does not occur because the sys-
tem contains small values of frequency detuning
quantity. At sufficiently large amount of nonli-
nearity, the localized mode is observed. Fig. 7
also shows that the systems with weakly cou-
pling or small value of k& are more likely to have
mode localization phenomenon. As a result, the
strong nonlinear mode localization is occurred in
the systems with small coupling stiffness and suf-
ficient large nonlinearity. Due to the fact that the
nonlinearity is the cause of detuning frequencies,
the relation found in Fig. 7 is equivalent to the
theory of localization of linear system with de-
tuning frequencies, where the strong localization
occur when the ratio of coupling stiffness to de-
tuning frequencies decreases 3). The results pre-
sented in this section show the possibility of the

2.0

- —'-__ ................
~ ‘ l" r
N I [
SN R \\ ]
F
B I L Do s S
0.5 e R N
0 20 40 60

Fig. 7 System parameters-ratio of average steady
state amplitude relations : —. — _, k = 5;
......... , k=10 , k=15,

additional localized solutions which are not found
in the linear systems. It should be noted that, for
the multiple solutions of nonlinear system, the
stable solutions are conformed to the initial con-
ditions. As a result, either localized solutions or
non-localized mode solutions may occur, depend-
ing on the initial conditions.

3. Forced Vibration of the Nonlinear
Two—Degree—of-Freedom System

3.1 Formulation

In this section, the harmonically forced vibra-
tion of the system in Fig. 1b is considered. In
order to obtain the bounded responses of forced
vibration, we add the dashpot with linear damp-
ing coefficient, fi, at the supports of both oscil-
lators. The system is excited by harmonic forces
having constant amplitude, F, frequency, Q and
no phase difference between the applied forces of
two suboscillators. The equations of motion are,

~

o tp g Ega Ko B

it wiei+ —ay (@i = wg) + i
F .

= Ecos(ﬂt), 1=1,2.(13)

The nonlinear term and coupling term are scaled
as Eq. 2 and we assume that the damping and the
excitation terms are small with the same order
as the nonlinearity and the coupling. The prob-
lem considered here is the primary resonance of
the system and the forcing frequency is set very
close to the linear natural frequency of structure,
Q = w. To describe the closeness of Q to w, we
introduce a detuning parameter, o, which can be
used as a parameter instead of using 2. Then we
write

= €/, k%:ef and Q=w+eo0.(14)

&=
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The equations of motion, therefore, become
& +wle; + ewzax? + ewzk(xi — -’D(z'+1)) + ew’pui;
= ew’feos((w+ea)t), i=1,2. (15)

3.2 Solutions

By following the same procedures as explained
in the free vibration part, we come up with the
set of equations for a; and f; of the response in
the form of Eq. 8 as

1 wk .
a; = —§w2uai + 5 Gt sin(Biy1 — fi)
+% sin(oTy — B3;) (16)
3 wk a;
gl = gwaaf + 7(1 - :;1 cos(Bi+1 — i)
w
—Eaii cos(oTy — B;). (17)

Eq. 16 and Eq. 17 can be integrated numerically
to obtain the response in time-domain. Further-
more, the relation between response amplitude,
a;, and excitation frequency parameter, ¢, can
be evaluated by considering the steady state solu-
tions of Eq. 16 and Eq. 17. The system should be
transformed into an autonomous form in which
T1 does not appear explicitly. One of the alter-
nates can be done by letting

vy =0Ty — P (18)

Y2 = P2~ b1 (19)
Substituting Eqs. 18 and 19 into Eqgs. 16 and 17
and using the conditions for steady state solu-
tions; a; = 0 and ] = 0, result

1, wk
—zwpnay + —2—(12 sin ya

2
+%f— siny; =0 (20)
1, wk .
— 5w Hay — —arsiny
—}—&)—21 sin(y; —v2) =0 (21)
3 wk a
—-gwoza2 - —2—(1 — i cos ¥2)

w
+2—af1 cosy1+o=0 (22)

3 2 2 (A)k (1,1 a2
—8"-’0‘(“2 —aj) + 2 (a—z - al)COS’)’z

-I—o';—f(icos('yl - v2) — —1—cos'yl) =0. (23)
a2 ay

The set of equations above can be solved numeri-
cally yielding the frequency-response relations. It
should be noted that the stability analysis should

3
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Fig. 8 Forced vibration response of the linear 2DOF
system a} ai, b) G;: , 1-st suboscilla-
1767 SER , 2-nd suboscillator.

be also performed to check for the stable solu-
tions.

3.3 Numerical examples and discussion

The system parameters of numerical examples
are selected as & = 0.01, k., = 0.01, 2 = 0.02 (1 %
damping ratio), ks = 1.0, w = 1.0 and f = 0.1.

The responses in time-domain obtained by in-
tegrating Eq. 16 and Eq. 17 are shown in Fig. 8
and Fig. 9 for linear system (& = 0) and nonli-
near system, respectively. The initial conditions
are z1(0) = —1.0, #,(0) = —1.0, 22(0) = 1.0 and
#9(0) = 2.0, and the detuning parameter is taken
as €0 = 0.05. It is shown in Fig. 8a on the res-
ponses of linear system that both suboscillators
have constant and equal steady state amplitudes.
For the nonlinear system in Fig. 9a, one of the
suboscillators vibrates with larger steady state
amplitude and the responses are localized modes.
Fig. 8b and 9b show similar results of 3; where
two curves are in parallel. Therefore, the gra-
dient at steady state is identical for both subos-
cillators. It can be interpreted from the identical
constant f; that the steady state vibration fre-
quency is the same for both suboscillators, which
is the frequency of external excitation, €.

Fig. 10a shows the frequency-response curves
and Fig. 10b is the enlargement of the area where
many possible solutions occur. The abscissa is
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Fig. 9 Forced vibration response of the nonlinear
2DOF system a) a;, b) G;: , 1-st sub-
oscillator; -....... , 2-nd suboscillator.

the excitation frequency written in term of the
detuning parameter, o, and the ordinate is the
steady state amplitude. The nonlinearity bends
the frequency-response curve and shows jump
phenomena. In this case, the responses of the
two—degree—offreedom system consist of two sets
of stable solution. The first set contains solutions
of the non-localized mode where both suboscilla-
tors vibrate with the same steady state ampli-
tudes so that the responses of both suboscilla-
tors can be shown in the same single line as a
thin-solid line. The second set of solutions is the
mode of vibration in which the two suboscillators
have different steady state response amplitudes
as shown in the thick lines. This mode is the lo-
calized one occurred near the possible region of
jump phenomena. It is seen that one oscillator
vibrates with large amplitude close to the up-
per curve while the other oscillator vibrates with
much smaller amplitude close to lower curve of
the frequency response. The unstable solutions
are shown in dash thick lines. Note that in case
of localized modes, there are two sets of unsta-
ble solutions. The relation is more clearly de-
picted in Fig. 11 where the relation between a,
and ay is given for the possible solutions. The
non-localized mode is shown in the straight line
of a3 = a3. The other solutions of localization
are shown in the thick lines where a; # ag. It

al, a2

aI, (12

0.09
€0
(b)
Fig. 10 Frequency-response curve:
, non-localized stable solutions;
, localized stable solutions;
— - — - -, non-localized unstable solutions;

..... , localized unstable solutions set 1;
......... , localized unstable solutions set 2.

is noted that, in this case, there is no differ-
ence of vibration frequencies between two sub-
oscillators, as shown in Fig. 9b. Consequently,
the cause of localized mode is not the frequency
difference, as in free vibration case, but it can be
considered as a result of different initial states
in a weakly coupling system. When the cou-
pling stiffness decreases, which is not shown in
Fig. 10, the discrepancy between localized mode
and non-localized mode is reduced, i.e. the thick
lines move close to the thin lines. It can be ex-
plained by considering the limit case of zero cou-
pling in which each suboscillator becomes an in-
dependent single-degree—offreedom system. For
a single—degree—of—freedom nonlinear system, the
steady state response at jump phenomena can
be either the upper curve or the lower one de-
pends on its initial conditions. When the two
single-degree—of-freedom systems are connected
together and for certain initial conditions, one of
them has steady state solutions close to the up-
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Fig. 11 Relation between steady state amplitude of
two suboscillators:

, non-localized solutions;

, localized stable solutions;

..... , localized unstable solutions set 1;

......... , localized unstable solutions set 2.

per curve while the other solution is close to the
lower curve. The steady state solutions may re-
main in this mode if the coupling stiffness is small
enough.

An example of occurrence of mode localization
is also shown in Fig. 10b and Fig. 11. When the
system starts form different initial conditions, for
this case a1 = 1.7, a2 =19, 8y = —0.87, 2 =0
and e¢o0 = 0.075, the steady state responses are
the localized vibration shown as the arrow head
_‘points. However, for some other combinations of
initial conditions, the mode localization may not
occur.

Although the phenomenon has shown some im-
portant characteristics which are needed to be
considered carefully in the structures with perio-
dicity, it has not been studied for civil engineering
problems. However, some civil engineering struc-
tures also have the periodicity configuration with
weakly coupling stiffness, for example, the mul-
tispan cables in transmission lines system. The
possibility of occurrence and its effects to such a
system are under investigation by the authors.

4. Summary and conclusions

The free vibration and harmonically forced vi-
bration of the nonlinear two—degree-of-freedom
system were studied in view of localization phe-
nomena. The nonlinear solutions were obtained
by the method of multiple scales.

In free vibration case, there is an onset ini-
tial condition in which the steady state solutions

are triggered from non-localized mode to local-
ized mode. The steady state amplitudes at local-
ized mode are different for both suboscillators,
which results from the difference in vibration fre-
quency at steady state condition. The strong lo-
calization was observed for the system with small
coupling stiffness and sufficiently large amount of
nonlinearity.

The responses of forced vibration also exhibit
localization phenomenon for certain initial con-
ditions and in a specific forcing frequency range.
The frequency-responses relation shows that the
cause of localized mode results from different ini-
tial states for the system with weak coupling stiff-
ness.

The condition for the occurrence of nonlinear
mode localization is generally dependent on three
main factors. Those are the closeness of natu-
ral frequencies, the order of nonlinearity and the
difference of the initial conditions among subsys-
tems.
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