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Numerical simulations have great advantages in investigating the failure mechanism of
brittle composite materials such as concrete because the motion of each individual ele-

ment and the internal mechanical state of each contact can be followed. In the present
study, a numerical model is investigated to simulate the failure behavior of concrete under

biaxial stresses using two-dimensional disk elements taking into account the degradation
of material stiffness at the contact line. The stress-strain relationship and the volume
change process up to the global failure are simulated by using the present model. Also,
the internal crack formation is simulated to investigate the failure mechanism of concrete.
The failure surface envelope of model concrete under biaxial stresses is obtained from .
simulation results. Good agreement is obtained between the numerical results and the

experimental data.
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1. INTRODUCTION

Methods for material failure analysis are divis-
ible into two main categories. The first category
including ordinary finite element and boundary
element methods can be applied to problems in
which the material is regarded as continuum, but
difficulties arise if the material becomes sepa-
rated by cracking after tensile failure. The sec-
ond category including distinct element and in-
terface element methods can be used before and
after failure continuously. The distinct element
method (DEM) was introduced by Cundall to
analyze a granular assembly numerically. The
first model’) used two-dimensional polygonal el-
ements and the second model? used circular el-
ements to reduce the complexity of modeling
and the computational time. The interface ele-
ment method was introduced by Zubelewicz and
Bazant® modifying the DEM by considering the
brittle aggregate composite as a system of per-
fectly rigid particles separated by interface layers.
The lattice model was introduced by Schlangen
and Mier?) and the microstructural unit element
method, by Tsubaki®. These models are used at
a small scale, where the small structural elements

disk element model, material modeling, simulation, concrete

of concrete are generated and aggregate, matrix
and interface properties are assigned to each el-
ement. In this research circular disk elements
are used to investigate a numerical method able
to simulate the macroscopic failure behavior of
concrete using the assumed mesoscopic material
model.

2. DISK ELEMENT MODEL

Contact Line

Figure 1 Disk Element Model

Fig.1 shows two disk elements in contact with
each other. In Fig.1l, X|Y are the global coordi-
nate axes, and n,t are the local coordinate axes
defined at the center of the contact line. A con-
tact line is located at the contact point or be-
tween two disk elements and its length is equal
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to the average of the diameters of the two disk
elements.

The relative normal and tangential displace-
ments and rotation of element j with respect to
element 7 at the center of the contact line ( v¢,
v§, w° ) are obtained as follows:

Ve = —T9UI - T U V°=[vS,0f,w];
U = [uz ut OJZ]T,

x? y7
' cosf  sinf 0
T = | —sinf® cosf R (1)
0 0 1.0

where V¢ is the relative displacement vector for
the center of the contact line, T is the trans-
formation matrix needed to transform the global
quantities of element i to the local quantities at
the center of the contact line, and U is the global
displacement vector for the centroid of element i.
Superscript ¢ indicates a quantity related to the
center of a contact line.

The local contact forces and moment at the
contact line ( f¢, ff,m®) are obtained by applying
the force displacement relationship as follows:

F< = KCVC; F¢ = [ ﬁ,vftcvmc]T.

3

kK 0.0
Ke=|0 k 0 e)
0 0 ke

where F° is the local contact force vector for the
center of the contact line, K¢ is the stiffness ma-
trix of the contact line, and kS, kf and k¢, are
the normal, tangential and rotational stiffnesses
calculated from the stiffnesses of the contact line.

Then the equilibrium equation for element i is

expressed as follows:
n

Ft = ZTczTFc; Ft = [ 023’ ;’mz]T (3)
j=1
where n is the number of elements which are in
contact with element ¢, F* is the external global
force vector of element ¢, and f;, ) ;,mi are the
external global forces and moment acting at the
centroid of element i. Eq.3 is made for every ele-
ment in sequence and assembled to get the global
equilibrium equation to be solved to obtain the
global displacement vector for all the elements of
the structure.
The reactions of the elements can be obtained
by the following equation.

R=KU (4)

where R is the global reaction vector for all the
elements in sequence, K is the global stiffness
matrix for the structure, and U is the global dis-
placement vector for all the elements in sequence.

3. MATERIAL MODELING

3.1 Stress-strain relationship
Fig.2 illustrates the stress-strain relatioship for
the material of the contact line. It is assumed
that material behavior of the contact line is elas-
tic up to the peak. In tension it is assumed to
be brittle but in compression and shear ductile

models are used after reaching each strength.
On Ot
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Figure 2 Stress-Strain Diagram for
Material of Contact Line
(a) Normal Direction ; (b) Tangential Direction

3.2 Failure criteria
The maximum stress failure criterion is used
for the behavior in the normal and tangential di-

rections independently. In the case of tension

" the contact line fails when the stress reaches the

tensile strength of. In the cases of compression
and shear the contact line fails when the stress
reaches the compressive strength o¢ or the shear
strength o7, and each stiffness is reduced to give
some ductility to the material of the contact line.
A
1.0

A

0.4

Reduction Ratio

1 6
Tensile Strain (x1 0‘3)
Figure 3 Effect of Lateral Tensile Strain
on Compressive Strength
A strength reduction law is used together with
the maximum stress failure criterion in the load-
ing of combined compression and tension where
the compressive strength of the contact line is
reduced as a function of the lateral tensile strain
using a relationship -similar to that introduced by

—240—



Vecchio and Collins®). Fig.3 shows the reduction
ratio as a function of the lateral tensile strain.
The same reduction ratio is used for the adjacent
diagonal contact lines for simplicity. This reduc-
tion law accounts for the effect of significant ten-
sile cracking and formation of continuous cracks
in the early stage.

3.3 Gradual degradation model

The gradual degradation law is used for com-
pression and shear for which the stiffness is re-
duced to 50% of the current value every time
when the stress of the contact line reaches the
strength.The number of degradations ny is spec-
ified and the stiffness becomes zero after ng is
reached. This gradual degradation law is es-
sential to model the behavior of the mesoscopic
structure of concrete.

4. CONTACT LINE MODEL

The contact line is divided into several layers
for temsion and compression as shown in Fig.4
and failure criteria are examined at each layer.
The normal, tangential and rotational stiffnesses
can be calculated as follows.

1 1 &
k== [ ErdAc= — Y s
n HC Ae HC ; ? K3 (5)
. GoAg |
kt - He (6)

ny
ko= [ pedr=Y mea (1)

Ae i=1
where E°, G¢ and H° are the elastic modulus,
shear regidity and the distance between the cen-
troids of the elements respectively. A° is the area
of contact line, and A¢, the area for shear resis-
tance, being equal to A°. The height of A€ is
equal to R* + R’/ and the width is taken equal
to unity. It is assumed that the contact line fails
when 60% of layers fail in tension. In case of
compression the maximum stress is used for fail-

ure check.

The normal and tangential stresses, ¢,, oy, at
the contact line are calculated by the following
equations.

_ fn M€
T Ac I’

where . [¢ is the second moment of inertia of the

0= fl— (8)

+

On

contact line around the center of rotation the po-
sition of which is fixed and f{ is the shear force.
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Figure 4 Layered Contact Line with Normal
Stress Distribution by Normal
Force and Moment

5. NUMERICAL ANALYSIS PRO-
CEDURE

The numerical simulation is done by using the
secant method to assure the numerical stability.
It is assumed that the deformation is small and
the position of contact line is not updated in each
loading step. The flow of the analysis is summa-
rized in a flow chart as shown in Fig.5.

@lve the equations |

1

Calculate the stresses
at the contact lines

|

Divide the stresses by
the strengths

Get the absolute
max. ratio

|

F=the inverse of the
absolute max. ratio

Reduce the structural stiff.

J

No Check on the global
failure

Yes

Figure 5 Flow of Analysis Using
Secant Method
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The analysis procedure is summarized as fol-

lows.

1. Apply unit force in the direction of the load.

2. Solve the equilibrium equations for all the
elements.

3. Calculate the normal and shear stresses at
the contact lines.

4. Divide all these stresses by the correspond-
ing strength in the normal and tangential
directions of contact lines.

5. Get the absolute maximum value among all
the stress ratios.

6. Calculate the inverse of this absolute max-
imum value as the imposed force to get a
failure at only one contact line.

7. Reduce the structural stiffness according to
the position of the contact line which reaches
the failure.

8. Repeat all these steps until the global failure
which is determined according to the exces-
sively large value of the displacement.

6. NUMERICAL SIMULATION

02 52

Width=212mm
Height=212mm
(@) (b)

Figure 6 Numerical Concrete Specimen
(a) Element Allocation ; (b) Contact Lines

Numerical simulations are made to study the
behavior of concrete specimen (200 x 200mm)
used by Kupfer et al.”) under compression, ten-
sion and combined compression and tension. The
numerical concrete specimen is shown in Fig.6
consisting of 60 elements of radius R = 15mm.
The diagonal angle between elements is chosen
to be 45 degrees to make the specimen symmet-
ric in the vertical and horizontal directions. The
element size and the element allocation are cho-
sen so as to give sufficient accuracy for the de-

formational behavior under biaxial loading. The
constraint between the concrete and the horizon-
tal and vertical loading plates is assumed negli-
gible. The material constants used are summa-
rized in Appendix A. Those material constants
and other parameters are identified through nu-
merical simulations by comparing with the ex-
perimental data. The material properties are as-
sumed uniform in the present study.

6.1 Simulation of behavior under com-
pression

Numerical simulations are made to investigate
the behavior of concrete specimen under uniaxial
and biaxial compression for different stress ratios.

Fig.7 shows the simulation results of concrete
under uniaxial compressive loading. A symbol
with a prime indicates a quantity related to com-
pression. It can be noticed from Fig.7(a) that the
stress-strain curve obtained by numerical simula-
tion has a good agreement with the experimental
result and can continue through the softening be-
havior. The volume change process under com-
pressive stress is simulated as shown in Fig.7(b).
The simulation result indicates that the volume
expansion due to cracking starts earlier than the
experimental result. The reason is presumably
that the present model is easy to expand laterally
forming vertical cracks as shown in the final crack
pattern in Fig.7(c). After vertical cracking diago-
nal cracks occur near the global failure. The final
deformation pattern in Fig.7(d) indicates that ex-
cessive expansion occurs horizontally due to the
vertical cracks.

Fig.8 shows the simulation results of concrete
under biaxial compressive loading for o9/0y =
(.52 where oy is the applied vertical stress while
o2 is the applied horizontal one. As shown in
Fig.8(a) the stress-strain curve has a good agree-
ment with the experimental result up to the
peak and also can continue through the soften-
ing behavior up to the global failure. The final
crack pattern shown in Fig.8(b) indicates that
the global failure occurs due to the crushing near
the top and bottom surface of the specimen with
vertical tensile cracks near those surfaces. The
final deformation pattern shown in Fig.8(c) in-
dicates that the crushing occurs at the top and
bottom row elements.
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Figure 7 Simulation of Concrete Specimen under Uniaxial Compression
(a) Stress-Strain Realtionship ; (b) Volume Change Process ;
(c) Final Crack Pattern ; (d) Final Deformation Pattern
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Figure 8 Simulation of Concrete Specimen under Biaxial Compression (o3/07 = 0.52)
(a) Stress-Strain Relationship ; (b) Final Crack Pattern ; (c) Final Deformation Pattern

Fig.9 shows the simulation results of the con-
crete specimen under biaxial compressive loading
for o3/0y = 1.0. The stress-strain curve obtained
by numerical simulation shown in Fig.9(a) indi-
cates that the simulation peak strain is less than

the experimental one. The final crack pattern

shown in Fig.9(b) indicates that the global failure
occurs due to the crushing near the bottom sur-
face of the specimen with vertical cracks between
the bottom row elements. The final deformation
pattern in Fig.9(c) indicates that the crushing
occurs at the bottom row elements.
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Figure 9 Simulation of Concrete Specimen under Biaxial Compression (03/c; = 1.0)
(a) Stress-Strain Relationship ; (b) Final Crack Pattern ; (¢) Final Deformation Pattern

6.2 Simulation of behavior under tension

Numerical simulations are made to investigate
the behavior of concrete specimen under uniaxial
and biaxial tension for different stress ratios.

Fig.10 shows the simulation results of concrete
specimen under uniaxial tensile loading. It can
be noticed from Fig.10(a) that the simulation
stress-strain curve has a good agreement with the
experimental one including the gradual softening
up to the global failure. The final crack pattern
shown in Fig.10(b) indicates that the global fail-
ure is due to the horizontal tensile crack associ-
ated with local shear failure which occurs in the
middle of the specimen. The final deformation
pattern in Fig.10(c) shows the separation occur-
ring in the specimen due to cracking.

Max. Crack Width= 0.07mm

Fig.11 shows the simulation results of the con-
crete specimen under biaxial tensile loading for
oz2/01 = 0.52. As shown in Fig.11(a) the stress-
strain curve obtained by numerical simulation
has a good agreement with the experimental re-
sult up to the peak. The post-peak behavior is
also simulated with gradual softening. The final
crack pattern shown in Fig.11(b) indicates that
the global failure is due to the horizontal ten-
sile cracks which occur near the top surface of
the specimen. The top cracks are linked together
with local diagonal cracks to form a continuous
crack. The final deformation pattern shown in
Fig.11(c) indicates the separation of the top row
elements from the specimen.
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Figure 10 Simulation of Concrete Specimen under Uniaxial Tension
(a) Stress-Strain Relationship ; (b) Final Crack Pattern ; (c¢) Final Deformation Pattern
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Figure 11 Simulation of Concrete Specimen under Biaxial Tension (o2/0y = 0.52)
(a) Stress-Strain Relationship ; (b) Final Crack Pattern ; (c¢) Final Deformation Pattern
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Figure 12 Simulation of Concrete Specimen under Biaxial Tension (o3/01 = 1.0)
(a) Stress-Strain Relationship ; (b) Final Crack Pattern ; (¢) Final Deformation Pattern

Fig.12 shows the simulation results of the con-
crete specimen under biaxial tensile loading for
o2/01 = 1.0. The stress-strain curve shown in
Fig.12(a) has a good agreement with the exper-
imental one up to the global failure. The final
crack pattern shown in Fig.12(b) indicates that
the global failure is due to the tensile cracks near
the top surface of the specimen. The final defor-
mation pattern is shown in Fig.12(c) indicating
the separation occurring at the top row elements
of the specimen.

6.3 Simulation of behavior under com-
bined compression and tension

Numerical simulations are made to investigate
the behavior of concrete specimen under com-
bined compression and tension for different stress
ratios.

Fig.13 shows the simulation results of the con-
crete specimen for og/07 = —0.204 where oy is
the vertical applied compressive stress and o5 is

the horizontal applied tensile stress. It is noticed
from Fig.13(a) that the simulation stress-strain
curve has a good agreement with the experimen-
tal one and can describe the softening behavior
up to the global failure. The final crack pattern
shown in Fig.13(b) indicates that the global fail-
ure is due to the vertical tensile cracks occurring
in the specimen. The final deformation pattern
indicates the crushing in the specimen.

6.4 Failure envelope

The failure envelope of the concrete specimen
under biaxial stresses is made using the simula-
tion results and compared with the experimental
one by Kupfer”. The strength of the numeri-
cal concrete specimen is determined by the max-
imum stress point of the stress-strain curve for
each loading case. It can be noticed from Fig.14
that a good agreement is obtained between the
simulation failure envelope and the experimental
one.
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Figure 13 Simulation of Concrete Specimen under Combined Compression and Tension
(o2/01 = —0.204)
(a) Stress-Strain Relationship ; (b) Final Crack Pattern ; (c) Final Deformation Pattern
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7. CONCLUSIONS

Through numerical simulations, it is confirmed
that the disk element model is able to simulate
the macroscopic stress-strain relationship and the
failure behavior of concrete under biaxial com-
pression, tension, and combined compression and
tension. The internal crack formation up to the
global failure is obtained through the present nu-
merical model. Hence, the appropriateness of
the assumed mesoscopic material models is con-
firmed. More accurate simulation is possible by
extending the present method to the incremental
method with iteration procedure.

Appendix A CONSTANTS USED IN
SIMULATION

The material constants and other parameters
used in the simulation are summarized as follows:

1. Flastic modulus E° = 12kN/mm?

Shear regidity G¢ = 5kN/mm?

Tensile strength of = 0.021kN/mm?

Comp. strength of = 0.21kN/mm?

Shear strength of = 0.021kN/mm?

Gradual degradation number for compres-

sion stiffness ny = 2

7. Gradual degradation number for shear stiff-
ness ng = 4

> o e

8. Number of contact line layers n; = 5
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