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INFLUENCE OF LOCAL IMPERFECTIONS ON BUCKLING '

STRENGTH OF RETICULATED SHELLS
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This paper presents several investigations into: how an imperfection
should be characterized in the design stage and the effects of various
types of shape imperfections would appear in the reduction of the buck-
ling strength of large-spanned reticulated shells or space frames. An
attempt is made to evaluate the reduction in collapse load due to the
imperfection specified by both inward-dimple shape with diameter of
buckling half wavelength of equivalent continuum shell and magnitude
as a fraction of member length. It is noticed that a treatment of geo-
metric imperfection on surface of reticulated shell refered with studies
and codes of spherical shells affect to the reduction of elastic buckling
loads as well as elasto-plastic buckling loads. However there exists var-
ious degree of reductions due to a fundamental structural behaviours
depending on characteristic shape parameters and member slenderness
ratio. Finally, strength evaluations considering characteristic reduction
for reticulated shell domes are discussed by using several strength design
curves as a function of the generalized slenderness.
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1. Introduction

Reticulated shells in large-spanned configuration
with rigid joints, called space frames, have to be eval-
nated the collapse strength of both elastic and elasto-
plastic ranges. However the problems that have to be
resolved in the design stage as well as in the applica-
tion of exact nonlinear numerical analysis to as-built
structures, still remain. Amongst many influential fac-
tors on the collapse strength of reticulated shells, the
effects of initial imperfections on elastic instability and
of inelastic behaviour of constituent elements on over-
all strength dominate the capacity reduction).

This study aims to discuss the treatment of ini-
tial shape imperfections in a similar way of design
guidelines for continuum shells?¥%%) and of investi-

gations into the characteristic influence on the buck-.

ling strength reductions in elastic and elasto-plastic
ranges??). By carring out several numerical analy-
ses following investigations are presented. How does
the measure for imperfection amplitudes in relation
to the local sizes, member length, thickness and arc

length, as well as to the overall shape parameters,
span length, rise and radius of curverture, raise the
imperfection sensitivity? Is the degree of reduction
of buckling capacity comparable to that for contin-
uum spherical shells, or not? Does the strength curve
appear in a similar manner of shells with severe im-
perfection sensitivity? '

2. Review for Treatment of Geometric Imper-
fections

2.1 Analtytical treatment

Computational studies in both continuum shells and
reticulated shells on the imperfection sensitivity have
been carried out by exploiting the shape imperfec-
tions as one of the bifurcation buckling modes, when
shells bifurcated VD910 Also from the elastic or
elasto-plastic buckling analysis applied to perfect ge-
ometry, some kind of deformation shapes have been
used as representative imperfection forms. Otherwise
the form of one of linear elastic bending deformations
has been often assumed. Furthermore on the basis
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of random nature of initial imperfection in as-built
structures the stochastic imperfection field has been
employed in a way of both fully random variable distri-
butions in spatial and magnitude!V, and bifurcation
mode-specific shapes with random amplitudes!?.

2.2 Treatment in design codes

In contrast to above which the shape of imperfec-
tion distributes over entire surface of shells, localized
area concepts with critical arc length also have been
investigated considering elastic buckling behaviours
with numerical analyses. In the design codes®? of
shell bucklings, several curves for the actual buckling
strength determined as the lower bound of the exper-
imental results, are only applicable in cases where the
actual initial geometry measured is within the toler-
ances in the shape and the maximum deviations of
magnitude. Then a reduction factor to elastic classical
buckling strength, called "knockdwon” factor, might
be evaluated against shell’s slenderness parameters!®.
Fortunately such buckling curves and design codes of
shell bucklings are well-established and revising peri-
odically by many researchers and others.

2.3 Previous studies in reticulated domes
For reticulated shells (single layer lattice domes)

with perfect geometry as shown like in Fig.1(a), out of

the displacement field obtained from elastic nonlinear
buckling analysis or from elasto-plastic buckling anal-
ysis, most deformed portions (areas) are remarked.
Here such localized portion can be related to a dim-
ple with diameter of apparent buckling(or bending)
wavelength. There a specific member among others
may be stressed sigrificantly. Also apparent buck-
ling wavelength could be predicted preliminary in de-

(b)Half-subtended angle 6,

sign stage by configuration shape parameters, like in
Fig.1(b) and member properties, like in Fig.1(c) and
(d), with support conditions.

The results!?18) ohtained previously have shown
that the reduction against linear buckling load, or
equivalent shell's classical buckling load, is influenced
by the configuration shape and constituent member
properties'?1915) There a specific imperfection form
and magnitude were adopted. The parameters have
been considered are as follows. The member sub-
tended half-angle as shown in Fig.1(b), 6o = £ /2R,
which is representative of degree of curvature R and
number of subdivision frequency n, and the member
slenderness, Ag = £y /iy, are restricted!®1V18)19) {5 45
8o > 2degs. with n=4 to 6, and 60 < Ay < 150, re-
spectively. Namely, if the member length £o=3 and 4
meters, then the radius R and R/?. using the equiva-
lent thickness £, = 2v/3 - tp ranges from 40 to 60 me-
ters and from 200 to 700, respectively. Also the dome
span L ranges from 40 to 80 meters. Then more larger
spanned reticulated shells will be planned, we have to
investigate into the overall configuration shapes and
dimensions, in conjunction with, the element size and
sectional properties which are different from previous
analytical models.

The imperfection form has been often assumed
in previous studies as a single node (placed nearby
boundary periphery) of inward type. The magnitude
of imperfection has been given as the ratio to a char-
acteristic rise height, h = £y - 69, of structural unit
at apex or to an equivalent shell thickness ¢,. Thus
the magnitude always depends on both 6y and Ag. The
other considerations to the magnitude might come out
relative to the overall span length L, radius of curva-
ture R and total rise height H.

ip =y IP;AP

e = 2\/5!',,
E A, I Kp
[}%1 myl JI:}\é{j
L Elasto-Plastic Element J
. 0 |
(c)Member model

N/N,

1.0

0.5

(N[N, 4 m =1

)]

0.5 1.0
m = \/(My/ﬁfyp)2 + (MZ/MZp)2

(d)Sectional strength interaction

Figure 1 Analytical model
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3. Scope of Discussion

3.1 Analytical method

In order to estimate the buckling load reduction
of large-spanned reticulated shell domes as shown in
Fig.1(a) and (b), but having the number of subdivi-
sion frequency n=20 with the member length £,=10m,
due to a specific initial shape imperfection and mate-
rial plasticity, a discrete nonlinear model?? which ac-
counts the effect of nonlinear geometry (called, non-
linear elastic buckling analysis) and elasto-plastic be-
haviour (called, ealsto-plastic buckling analysis) is
employed. Also the linear eigenvalue analysis for
perfect structures is carried out. The effect of ax-
ial force on the member bending stiffness is consid-
ered with the slope-deflection method using stability
functions?2)2®) by extending three dimensional beam-
column elements upon the theory of small finite de-
flection with bowing effect, since for analysis of retic-
ulated shells where axial forces are large the geometric
stiffness matrix approach requires that each member
be broken up into more elements.

The constituent elements are modeled by nonlinear
elastic beam-column members with elastic springs at
connections; and three elasto-plastic spring systems,
with zero-length plastic hinges, placed at both two
external nodes and the center of member!®17 just like
the springs-in-series model®¥), as shown in Fig.1(c).
Also an approximate elastic plastic behaviour is used.
The plastic effects are included by three elasto-plastic
springs which are governed by the plastic flow rule
based on the interaction of axial force and moment
about the bending axes except torsions, as shown in
Fig.1(d).

The ordinary structural matrix equations with con-
densed hybrid element in resultant single member ¢an
be formed with consideration of a total Lagrangian ap-
proach in view of the incremental formulations having
tangent stiffness matrix. These equations are solved
using the load and displacement control method with
the linearized Newton-Raphson scheme!®17) | Tt is as-
sumed herein that buckling/collapse occurs whenever
a limit point load or bifurcation load occurs.

3.2 Model parameters

Overall configurations of space fra.mes play an im-
portant role of the structural behaviours. Likewise
shells of double curvature, the imperfection sensitivity

Table 1 Geometric shape parameters

0o(deg.) R(m) L(m) H(m). H/L
1.0 286.5 196.0 17.3 0.088
2.0 143.3 184.2 33.5 0.182

Table 2 Member properties

Ao (mm?) I mm") Np(kN) M,(kNm)
{ x 10%) 10%)

60 148.0 4100.0 3479.0 522.34

120 37.1 258.0 872.2 65.33

of spherically reticulated shells with rigid joints under
uniform loading has been discussed in view of elastic
nonlinear instability. In those studies'®'®) buckling
load reduction to linear critical load would relate to
characteristic buckling modes with buckling half wave-
length. The overall buckling due to loss of member ax-
ial forces often arises fromi the combination of shape
and member parameters. Also the flexural member
buckling dominates when the member becomes more
slender. On the other couplings of buckling failure
modes in elasto-plastic collapse come out depending
upon those parameters!®13)18),

The parameters of analytical models are summa-
rized in Tab.1 and Tab.2. Objective reticulated domes
whose configuration with span I over 150 to 200 me-
ters are depicted like in Fig.1(a)(b), are composed of
straight circular tubes with rigid joints. And those
are modeled having sectional strength interaction as
shown in Fig.1(c)(d). Here the pipe member’s proper-
ties are the yield strength, oy = 235N/mm and the
elastic modulus, E = 206kN/mm?, respectively.

Such a large spanned dome with more shallower
shapes will be constructed making the member sub-
tended half-angle at apex less than 6y = 2degs. From
previous studies into bucklings of reticulated domes,
we adopt such analytical model parameters as in
Tab.1 and Tab.2. These domes have the fundamen-
tal buckling behaviours as follows. When the case
of 8o = 2degs. and Ay = 120, it seems to appear
the member flexural buckling®12)16), On the other,
shell-like elastic bucklings!®18)25) may be dominant
in the case of 8y = 1deg. and A9 = 60. The charac-
teristic interaction of shell-like buckling and member
flexural buckling!®1®25 may appear in the case of
0o = ldeg. and Ao = 120. The case of 6y = 2deg.

Table 3 Fundamental buckling characteristics
and buckling loads(kN)

6 1deg. 2de 1deg. 2deg.
o 80" 80 12 12

shell-like shell-like coupled non-shell

elastic = plastic failure member

¢ 16.05 8.02 8.02 4.01

P 260.0 1039.7 32.5 130.3
cr,eq

NY . 2483.3 4963.7 3159  630.2

Ph» 2626 10123  31.6 92.0

Pc,0 172.0 790.5 21.1 90.7

PP, 168.7 523.2 21.1 90.7

NOTE: 5 = 12V2/Mofo=Shape Parameter
£, ]t ~ 1.47/€(Shell Analogy)
=Equivalent Classical Buckling
Load per node. ;
* N, eq = Poreq/69(Equivalent Axial Force).
Ng(Euler's Force):
8350kN (30=60); 519kN(}o=120)

CT ,€q
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and )y = 60 seems to show the elasto-plastic shell-
like buckling'”'®. Thus the analytical models with
parameters summarized in Tabs.1 and 2 are represen-
tative to discuss the ultimate buckling capacities.
For the reticulated domes with perfect shapes, buck-
ling analyses are separately carried out under each
design reference loads Py per node, and the results
are shown as in Tab.3. The design reference load Py
is assessed in this study, by preliminary calculations
using an equivalent shell theory under uniform verti-
cal loading by multiplying tributary area \/5(%/2, and
the Euler flexural buckling of members after the allow-
able member stress design of AIJ. Here the notations,
Plin peland Pfrlo, mean the buckling loads of linear
eigenvalue analysis, non-linear elastic buckling analy-
sis and elasto-plastic buckling analysis, respectively.

3.3 Imperfections for reticulated domes

(1) Specifying the imperfection

Insofar as an elastic equivalent to continuum shells
may hold, the length spanned by local imperfections,
often called the gauge length or template length in
design codes of shells, is specified by the notation®?,
of £., = 3.5\/Ri.. Here R is the radius of curverture
related to the shape parameter of reticulated dome
as R = £y/sinby, and {, = 234 is the shell thick-
ness calculated by using the radius of gyration, 4, of
member. Also sometimes the rise of structural unit
at apex in reticulated dome, h, which coincides with
h = £y sin g, is used to specify the imperfection mag-
nitude, € = &ofh, in case of snap-through bucklings
of space trusses.

The maximum radius of curvature, R;y,p, for equiv-
alent spherical shell as a local imperfection measure is
also adopted, then using relation below®), the critical
ratio of Rimp,/R goes to over two.

§o €2 R 1
T U ES ) Em @

where the increased-radius imperfection can relate to
the inward dimple imperfection as the shape function
assumed in Blachut and Galletly®), as below with the
notation of §p replaced by wy for maximum depth, in
this paper.

W =wx - )

mp

Here Simp = £ /2, and S means the distance mea-
sured from center of the meridional extent of the im-
perfection with the maximum- depth of wg, assigned
its length to nodes within circle of £, in diameter.
Meanwhile the maximum tolerance of overall imper-
fection often is related to R and the ratios are from
1/100 to 1/200, or about R/3000 after Duldcska?®).
Another method of specifying construction deviations
in framed buildings is often based on the ratio of im-
perfection amplitude wy to the length of longest mem-
ber which means the maximum slenderness ratio of
member in structures (e.g. Morris?).

(2) Employed imperfections

This study considers the shape of imperfection and
the magnitude, which are summarized in Tabs.4,5 and
6 as followings:
a)each of single nodes on a half of meridian along D
to O, as shown in Fig.2, which corresponds to the case
of {sy = 24y with woe=100mm, is used to compare the
results with previous studies!®!® which corresponds
to the case of Type A, .
b)the smooth dimple in shape defined as Eq.(2) which
is in a circular area spanned over several nodes with
the diameter, {.,, measured from the boundary, as
shown in Fig.2 with solid lines like Type B, is adopted
first,
c)the maximum magnitude at the node placed at cen-
ter of dimple circle, wy, is determined by a fraction of
member length as wo = k x £y with £ = 0.01,0.02,
d)the smooth dimple also located on the apex of dome,
just axisymmetric imperfection mode with variable di-
ameter, £, as shown in Fig.2 with broken lines, Type
C, is used.

Here each £, as shown in Tab.4 does not equal to
mx£y, m=the number of members. Then for Type
B and Type C as shown in Fig.2 amplitudes of nodal
imperfections are assumed as ., =mxX4{; and assigned
by using Eqn(2).

The ratio of imperfection magnitude to the reference
length may be convertible each other as summarized
in Tab.5 (for €o = wo/t.) and Tab.6 (for ¢, = wq/t.),
respectively.

In contrast, Ueki et al.!9 reported the maximum
imperfection amplitude of about 3(mm) from observa-
tion in vertically downwards of realsized model hav-
ing member length of 3(m). Despite configuration
shape parameters, it seems that space frames could be
constructed with rather accuray in actual situations.
The imperfections assumed with the maximum ampli-
tudes, wyp, are given to nodes vertically downwards in
this study.

Type C(Concentric) Type A(Node 1,only)

A QO 9871 66
VVAVAYAVA A A VAYAYAYAY AN AS AU N
hum\v‘v,AVAVAVAVAVAVA‘/;\"& K
uuvgn;vm&!@gﬁ&um AN S At
EREISBEIOOON
‘é&VL%AV‘t‘AVAVAVé ‘ “""“':

SR
Bold lines::Critical members(N,,,,)
Broken lines::Concentric circles
(m=Number of members)

Figure 2 Geometric imperfection shapes
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Table 4 £, = 3.5//Ri.(meters)

60 Ao = 60 Ao =120
ldeg. 45 32
2deg. 32 23

Table 5 €0 = ’wo/h

fo ldeg. 2deg.
wy = 50mm  0.29 0.14
wy = 100mm 0.57 0.28

Table 6 ¢; = w, /[t.

Ao 60 120
we = 50mm  0.08 0.17
wy = 100mm 0.17 0.35

4. Numerical Results

Ordinary imperfection sensitivity analyses for con-
tinuum shell bucklings have been investigated theoret-
ically or experimentally in view of a family of Koiter’s
approach?19, Then a "knockdown” factor as the
ratio of the actual buckling load /stress to the theoret-
ical (classical) critical load /stress has been evaluated
against the magnitude of the deviation from the ex-
actfideal configuration shape. However for reticulated
shells require many more variables in their description
for formula with relating critical load /stress reduction
to imperfection magnitude parameters.

In order to evaluate a "knockdown” factor of retic-
ulated domes, we have some calculations of which the
definitions of characteristic "knockdown” factors as
the reduction of buckling loads in this study, are given

p=Pg/P5

1.0+ bo Ao —
¢ 1ldeg. 60

0,9}— O 2degs. 60 ——H
A 1deg. 120

0.8}~V 2degs. 120 ——

oY
LI B VAVAVAVAY;

0.0—= A

| L L L L L

¥
1234567890
(a) NODE POSITION

0.5

as follows. For the elastic and elasto-plastic knock-
down factors, p and pyi, mean the ratio of P! and PE
to Pli® respectively. For the reduction from buckling
for perfect geometry to for imperfect cases, p' and p;,,

mean the ratio of buckling loads to P&/, and Pf,lo,
spectively.

For the perfect domes of analytical model with com-
binations of §p; Ao, fundamental elastic buckling be-
haviours are governed mainly by 6. Representative
mode or displacement field along a half of meridian D
to O, as shown in Fig.2, appears in a specific manner.
When fy=1deg., then the most deformed portion lo-
cates near boundary periphery including nodes 1 and
2 with shorter wavelength. On the other, in case of
fo=2degs., longer wavelength spanned from nodes 3 to
6 appears with lesser edge effects. The most stressed
members also locate within such deformed portions;
(1)for dy=1deg. with Ao=60 and 120, members D-
1 and 1-2 on meridonal lines, repectively, and (2)for
fo=2degs. with Ao=60 and 120, members 4-5 and 5-
6, repectively. At the elasto-plastic buckling load, the
members having maximum axial forces just move more
towards the apex but adjoining to the most stressed
members at elastic bucklings.

re-

4.1 Single nodé imperfection (Type A)

The elastic and elasto-plastic buckling reductions
are given in Fig.3 and Fig4 for p and p' against
wy=100mm, respectively. In case of §g=1deg. and
Ao=60, the reduction appears significantly in lower
value at the node position 2. On the other hand, the
reduction for case of p=1deg. and Ag=120 .seems to
be independent on the node position at least in elastic
bucklings.

From the comparison of the results from Ueki et
al.l¥ and Mutoh et al.!®, which were obtained in
case of imperfection magnitude, wy = 0.2¢, despite
of £,, = 24y with direction in center of curverture at

I — pel el
- Pcr/PcrO

1.0

O
OOO

0.9
0.8

o
000p°

lw i
VAV

Voovvv

0.5

rirvyrrtrnrvuvl

12345678
(b) NODE POSITION

T
90

(wo = 100mm for Single Node along Meridian)
Figure 3 Elastic buckling reduction
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Figure 4 Elasto-plastic reductlon
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Figure 5 Imperfection sensitivity for w,=50, 100mm
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Figure 6 Knockdown factor curve against «; ¢,

the node position 1, the reductions almostly coincide
each other, except for the cases of (§p=2degs. , Ao=60)
and (fp=2degs., Ao=120). Furthermore, the node po-
sition affecting reductions tends to be more internal
in a dome.

4.2 Smooth dimple (Type B)

The comparisons of imperfection sensitivities with
magnitudes, wp=50,100mm, are given in Fig.5. When
the cases of §g=1deg. and (fp=2degs. , Ao=60) are
remarked, those sensitivities are not so pronounced.
The other case, fg=2degs. and A=120, more signifi-
cant reduction p'; pp; from loads for perfect shapes is

observed. -

In ordinary manner, characteristic "knockdown”
factors can be depicted as in Fig.6, against ¢y and €
which are illustrated in Tab.5 and Tab.6. From this

figure the cusp-like curve is obtained for the case of
fo=1deg. and A¢=60 and 120, which is resembled
with the results from Koiter’s approach for ocntinuum
shells. In the elastic buckling reductions, Fig.6(a),
when the results of the case, fp=1deg., show the
lower bounds. But the case of §p=2degs. and )o=60,
shows significant reductions in the elasto-plastic buck-
lings even to 0.4 for we=100mm but €= 0.17, as in
Fig.6(b), but for perfect shape p,; shows a half of lin-
ear buckling load P, .

4.3 Smooth dimple (Type C)

First of all, the influence of imposed imperfection
area just relapced £, to mx/{, having center of con-
centric O, where m means number of members along
meridian with center O, as shown in Fig.2 is compared.
From Fig.7(a) and (c) for case of fy = 1deg, the reduc-
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Figure 7 Buckling reduction versus imperfection area spanned by mx/, at apex

tions appears in characteristic manner in contrast to
the case of fp=2degs. In Fig.7(c) each marks of empty
and blacked triangles for p, py and p’, p;,, coincide with
each other. Also in Fig.7(b) similar coincidence is re-
marked just below m=6, when £, =60m.

However the results for Ap=60 show the pronounced
reduction in the range of m between 6 and 8 which
nearly corresponds to 1.5 or 2 times £, =45(m). On
the other hand the reduction for case of Ag=120 may
be affected within mx£y, < 60{m) which ranges about

2 times £, =32(m).

As before-mentiond fundamental buckling be-
haviours of analytical models, nodes located on cen-
tral portions always do not so be deformed relative
to more outer prtions near boundary, effects of shape
imperfections of concentric dimples Type C on charac-
teristic load reductions are not no significant. In case
of 8p=2degs. which often shows fundamentally the
member flexural buckling, the effect of dimple diame-
ter m x £y is remakable from Fig.7(b). However £, for
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each combination of 6y; A¢ may affect the load reduc-
tions except the case of §p=2degs. with Aq=60. Also
despite Type C imperfections most deformed portions
almost always appear in nodes placed outer area on
dome surface.

Next, in order to disucuss the imperfection sensi-
tivity in case of smooth dimple at apex (Type C),
all the plots for p and pu given in Fig.8, which are
adopted from Fig.7, lead to be higher than the plots
shown in Fig.6, against ¢, > 0.17, except the case of
6o=2degs. with Ao=120 as denoted by triangledown
marks. From these comparisons the influence of the
maximum imperfection magnitude and the location
introduced on the buckling load reductions have to be
considered when designers face to select a reticulated
dome configuration. However the attention might be
payed to local imperfection distribution spanned over
approximately 2x£o to 4x£g in smooth dimple shape
of Type B, introduced into periphery in a dome.

5. Strength Evaluation

In shell-like buckling of reticulated shells, one may
often adopt the reduction curve described in the de-
sign codes, but calibrated against the special shell’s

slenderness Ay, = (/oy/ao. Here o, means the

classical bifurcation buckling stress and o is a char-
acteristic "knockdown” factor for continuum shells
derived empirically from many experimental studies.
One of buckling design formula for continuum shells
is the type of Schwarz-Rankine formula(e.g. DIN?,
ECCS®) or the modified Dunkerley formulal® given
below, respectively.

Ty

+(2P =1 (3)

[a42% Oy

Oy 1

= = x(A, 4
oy aAl+bAZ +1 x(A) (4)

Also the ultimate load capacity of continuum shells
has been given semi-empirically'® by the plasticity
reduction factor ( multiplied with a x o, where (
equals to A2 \/A2/4 +1— A%/2.

5.1 Buckling curves

For reticulated shells, the generalized slenderness
very similar to the above slenderness without re-
duction factor like o could be determined as A =
VNy/NE» or = y/o,[oli for perfect configurations
through a linear eigenvalue analysis applied to the
whole structure!®P1®).  Here N,=the yield axial
force, N!i* =the critical axial force of a specific element
within a characteristic buckling area over structure,
just corresponding to the linear buckling load PU».
We have presented several buckling curves'®17)18) o
the basis of above Eqns(3) and (4) as well as of equiv-
alent column flexural buckling formula.

We introduced the assumption of linear dependence
between applied loading and internal maximum axial
force in a specific element even to the ultimate state.
Becuase it is hard to compute the ultimate buckling
capacity of reticulated shells having huge number of el-
ements at design stage, but one can, in practical, carry
out the linear eigenvalue analysis as well as linear elas-
tic stress analysis on computers. In order to estimate
the buckling capacity by only carrying out eigenvalue
analysis, following assumption is made. Using the ref-
erence design load Py and the axial force Ny obtained
from linear elastic stress analysis, the estimation of
ultimate buckling strength N, and ultimate capacity
P, is given as below:

No B
Nu:P,XFO-;Pu:N,XFO (5)
The effectiveness of the assumption about the load
carrying capacity prediction should be discussed. But
in this paper this issue is just beyond scope, and some
investigations will appear in the near future??.

5.2 Comparisons with design curves

In order to evaluate the capacity reduction for retic-
ulated shells, comparisons in-between the buckling
curves are made. Insofar as a single design curve may
be prefered, a "knockdown™ factor a=0.5 but replaced
from o to oli® = NJ " fA, in Eqn(3), from those pre-
vious studies'®??) might be appropriate and from the
results presented in this paper. Or another value, say,
a=0.8, may be applied to the modification of strength
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curves if some kind of classification due to fundamen-
tal structural behaviour is needed.

First, we illustrate the strength curves by using re-
sults obtained from aforementioned imperfection sen-
sitivity analyses as a function of A. Here each A for
fo=1deg. and Ay=60, 120 is 0.995 and 1.446, respec-
tively. Also for fg=2degs. each A is 0.723 and 1.200
for Ap=60 and 120, respectively. In Figs.9, 10 and 11
of which results correspond to previously specified im-
perfections, Type A, Type C and Type B, respectively.
In case of Type C, those plotts were given only for
most reduced values obtained from numerical analysis
with variable £., = m x £y, to each configuration mod-
els. Namely, the coefficient m stands for 2 and 4. In
case of Type B, m also given corresponds to each the
coefficients approximately deduced from Tab.4 against
the member length £,. Among those it is observed in
the range below A=1.0 that the imperfection like Type
B may affect the reduction of buckling strength rather
than other cases.

Since one can replace the slenderness A to A,, like
the shell’s slenderness including a "knockdown” fac-
tor, the buckling curve for reticulated domes with
localized geometric imperfections as a function of A
and A, are feasible as shown in Figs.11,12 and 13
with Type B geometric imperfections, respectively. In
these figures, the results from not only estimations by
Eqn(5), denoted by marks + with dotted lines, but
also N,,.. obtained directly for the critical member
with marks 0, O, A and x, are depicted in parallel
against slenderness A and A,, respectively. All the
marks show the reductions of maximum axial stress
ratio, which correspond to be denoted as upper and
lower posions due to we=50 and 100mm, respectively.

In Fig.11 plots of normalized buckling strength as
a function of A are compared with not only column
flexural buckling curves, denoted as AIJ-LRFD and
AlJ-Allowable, but also uniform reductions in elas-
tic buckling strength given by 0.8/A% and 0.5/A2. On
Figs.12 and 13, including shell design curves, the buck-
ling strength as a function of A; with @=0.5 and 0.8
is shown, respectively. Firstly, the estimated results
from Eqn(5) are almost always lower than the val-
ues directly obtained. Furthermore the coincidende
between the plots and the ECCS design curve with
a=0.8 in the range of slenderness A, by 1.0 is remark-
able. ‘Secondary, from Fig.11, the strength curves for
column flexural buckling seems not to be appropriate,
in particular for A by 1.0. On the other, both results
for normalized strength are just inbetween the curves
0.8/A2 and 0.5/A%.

Of cource an idea of classified buckling curves like
multi-column strength curves will be available, since
the reduction factor depends on the shape parameters
6o and Ag or the charateristic buckling wavelength.
However we may adopt the comment on one of engi-
neering judgment for a "knockdown” factor stated by
Hoff?): insofar as the imperfection sensitive sturcutre
may be concerned, the upper bound of reduction fac-
tor might be restricted by 0.5 considering even uncer-
tainty of nature of geometric imperfections at design
stages.
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6. Conclusions

From above-mentioned results, when inward smooth
dimple shape imperfections with characteristic mag-
nitudes relative to the constituent member length in
reticulated domes with rigid joints is applied to evalu-
ate the buckling load reduction, followings are found.
(1)The elastic and elasto-plastic buckling reductions
appear not so pronounced with comparison of those

for continuum shells. (2)Amongst buckling load re-
ductions the case of dimple axisymmetrically located
on the apex shows relative lower than the case located
on near the dome boundary.

However the buckling load reductions of domes with
elastic shell-like buckling characteristics has to be in-
vestigated further in view of comparison with elasto-
plastic bucklings of spherical shells. This paper dis-
cussed the buckling strength curves for reticulated
shells with locally distributed geometric imperfections
in view of characteristic slenderness. The results lead
to a potential evaluation method for buckling capacity
of space frames in a similar way of ordinary practical
design procedure of columns in a frame building and
of continuum shells.
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