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This paper presents a modal analysis method to assess damage for damped structures by using very few lower measured
vibration modes. Different from our previous studies, all the zero-terms in global stiffness matrix are hereby excluded
from the least-square estimation(l.SE) procedure which is used to detect the location of damage. Therefore, the required
number of vibration modes for this detection will considerably be reduced. To verify such an improvement, a ten-story
shear type building with an artificially assumed damage has been investigated and the damage of the structure is
consequently evaluated by using only the first(fundamental) analyzed measured mode.
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1. INTRODUCTION

For structures, analyzing an earthquake record or measuring
modal parameters can lead to a detection for degradation of
stiffness or change of damping by using various system
identification techniques. Many time and frequency domains
identification methods have been developed to identify
structural parameters (or to detect damage) and have been
widely utilized in civil engineering field. However, those
methods meet some difficulties, e.g., great effect of noise on
identification accuracyl) , uniqueness problem of identification
result due to location of sensors®’ , as well as extremely small
time intervals (time history method) required for structures with
high frequencies3) , etc. To avoid those difficulties, the methods
of various modal analysis techniques based directly on measured
modal parameters have been considerably developed to identify
structural parameters in recent years, with some improvements
of vibrational testing technique4 )

There are many studies® ” ©) to directly identify the stiffness
matrix and to consequently evaluate the damage(degradation of
stiffness) of a structure by using modal analysis methods.
Among those methods, it should particularly be pointed out that
Salane and Baldwin®’ successfully identified all the non-zero
terms in stiffness matrix before and after damage for full-scale
highway bridge structures by using measured vibration modes.
In their's method, it needs a lot of measured modes if there are
many those non-zero terms. It is known, however, that some-
times only the first and the second vibrational modes can
satisfactorily be obtained for practical structures. Based on this
reason, several kinds of modal analysis methods” * #* *” which
can assess or estimate the damage of structures by using lower
measured modes have been paid attention by engineers recently.

On the other hand, an exact identification of a global stiffness
matrix(a symmetry full matrix) needs 10 NN+1)2
independent measurements, in which N represents system's
degrees of freedom(DOFs). Also for LM measured vibration
modes, there are LM ¢+ N known values of measurement.
Therefore the required LM for the identification is equal to
NIN+1)2/N, i.e. N+1)/2. For that reason, those kinds of modal
analysis methods in which the lower measured modes are used
are approximation or estimation methods of structural damage
detection. In order to improve the estimation accuracy, two basic
procedures for damage detection were introduced in our
previous studies®’ * *7 1" The first procedure is to detect
the locations of damage(degradation of stiffness) by using a
least-square estimation(LSE) procedure and the second
procedure is to solve a certain unknown scalars(severity of
damage) for those detected locations in stiffness matrix through
a free-vibration equation of motion. Moreover, for general
structures, it is recognized that there are many zero terms in
stiffness matrix. Also these zero terms may be considered to be
consistent®’ before and after damage. In order to reduce the
unknown quantities in the aforementioned LSE procedure, those
zero terms should be excluded from the LSE procedure. There-
fore, the required modes of measurement to detect the locations
of damage will further be reduced. For this consideration, based
on our previous studies®’ * ¥’ , this paper presents a modal
analysis method in which all the zero terms are excluded from
the LSE procedure for damage assessment of damped structures.
To verify such an improvement of this method, a ten-story shear
type building with a damage (degradation in stiffness) in some
stories, 1s investigated by using only the first(fundamental) mode.
Consequently the damage of the structure is evaluated.

In order to easily understand the real significant for
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degradation of member(element) stiffness in structures, the
words"location and severity of damage" is used instead of the
words" location and severity of stiffness degradation” in this paper.

2. MODAL ANALYSIS INSPECTION

A free-vibration equation of motion for damped structures, is
described as

IMI[@1[Q7]+[CIPILQI+KI[#]=[0] @

where [M]=mass matrix; [C]=damping matrix; [K]=global
stiffness matrix. Also, the natural frequency matrix [ Q] and the
mode shape matrix [ @ ] are as follows

[Q]LMXLM=Dtag(PpP9; ’um)=[Q¢]+i[Qb]
(9%~ [Q5-[OF1+2[Q,][0,) 2)
[@1ppp= [0, 000, ~ X0

in which LM=the number of measured vibration modes;
N=the system's number of degrees of freedom; it=-—1;
{X},(p=12,+ + + LM)=the p-th mode shapes; also

Rp=—E 0,0, 3)

©,=0, I—E: @

where @ ,, w , and & , = the system's p-th undamped natural
frequency, p-th damped natural frequency and p-th damping
ratio respectively. The well-known representation of the
Rayleigh damping is written as follows

[C1-B,[M]+B,IK] )

inwhich 8 4, B 5 =scalars regarding to the Rayleigh damping.

In this study, the mass matrix is considered as a constant
matrix regardless of damage. Also initial(before damage) global
stiffness matrix [K,] is considered to be a known matrix’ >,
e.g., structures remains in elastic stage before damage or
stiffness is determined by referring the design materials.
Moreover, if there are measured data from vibrational test, the
matrix [K,] could be corrected or improved by using those
data'® . Denote [AK]=[K,]—[K], in which [K] is
degraded(after damage) global stiffness matrix and [AK] is
unknown change of stiffness matrix due to damage. Substituting
the [Q], [ @], [M], [Cl(see Eq.5) and [K](=[K,]—[AK]) into
Eq.1, and arranging the obtained equations, the separated
real-part of the equations can be obtained. Te equations for the
real-part 1S

[AK][T]-{E] Q)

in which [ AK]y < =the unknown change of stiffness matrix

due to damage;

Cla~(B,[RUQI+[®]D)  and .
[l ua IR0 + B[SO D+KIT] M

where N=the number of system's DOFs; LM =the number of
measured modes. It should be pointed out that the change of
stiffness due to damage is considered to occur only in non-zero
terms®’ of global stiffness matrix [K] in this study. Therefore,
there are a certain zero-terms in this unknown matrix [ AK].
Those zero terms should be excluded in order to reduce the
unknown terms in [AK]. Thus, the left non-zero terms in
[AK] have to be written as a form of vector, 1.¢, Eq.6 becomes

[BIAK]=[Z] ®
in which
B, Dl_, 0
Bz D2,t
Bl |5 Bl - ;
®
By 0 Dy,
D”=(I‘u, Toyo > FN)
.P:l’ 2) ) N
=1, 2, = , LM

(AR =Bk, AR, o = ARy A, ARy, =
Akypyy o Ay, Ay, o Ay )T

whereN;, Ny, * + *, N, =the numbers of non-zero terms at
the Ist, 2nd, * *+ * Nth rows in stiffness matrix [K] respec-
tively; the total number of those non-zero terms NF=N,; + N,
+ ¢+« +N,;and

A

1 1 1 2 2 2
(LMXN)X1={Z§ )’Zg )’ - 7ZI(V) > Z§ ),Zg )s bl 7Z§\')

AR A /e

={EI,I’EZ,1’ ’EN,I » 51.2’32,2’ ’En,z
[+ T
EIMEZ,LM ’“N,U\) an

in which the superscripts (1), (2),* * *«, M) in Eq.11
represent the orders of measured modes. In order to easily
understand the representation of matrix [B] in Eq.9, a stiffness
matrix [K] and a matrix [B] of three DOFs system are given as
follows: N=3; measured modes LM=2; the number of non-
zero terms( in matrix [K]) NF=7,

w 0 Ky i Tie
X1 = by kyul; M = 2,1 Pz,z 3
by by Ry 51 L3z
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Dy, 0
D,,
- [ ] 0 D,,
(2x3)x7 =
2 D1,2 0
D,,
0 D,,
Iy, Ty, 0 0 0 0 0 ky
0 o0 I,T, 0 0 0 ki
0o 0 o0 0TI, T, Koz
. ; [AR)=WAk, 30
r, T,, 06 0 0 0 0 E,,
0 0 I,,T;, 0 0 0 k.,
| 0 0 0 0 IL,,T,, T, k3»31

It is easy to verify that the [B] {Af()} is totally same as the
[AK][T'] in Eq.6 from observing the expressions of [B] and
{AR}. Besides, it should be pointed that if D, ;(p=1,
2, + +,N)={0} nEq.9,theD, ; should be excluded from
matrix [B;]. Note, the Ak; ; and Ak ; 1 are hereby considered
to be two independent unknown stiffiness coefficients in Eq.10.
According to the reason shown in Appendix I, Eq.10 has a
good estimated result for location detection of damage. On the
contrary, that the Ak; ; and Ak; ; are considered to be a same
coefficient(symmetry of stiffness is used) in Eq.10 will often
lead to some difficulties for damage location detection(the
details is given in numerical example). In order to easily
understand the reason of Ak;;and Ak;; being considered as an
independent parameter in the LSE(least-square estimate)

procedure in this study, Let's focus to a node(in FEM model
with N degrees of freedom), e.g., node 1 which corresponds
tok,,or Ak, in structural global stiffness matrix. It is well
known that the k,  is assembled by each stiffness of member
corresponding to node 1. Therefore, if there is a practical
damage in a member which is related to node 1, then there
must be a stiffness degradation in node 1, i.e., Ak, ,#O0.

Conversely, if there is Ak =0, then there is no stiffness

degradation innode 1 surely, i.e. all the Ak, (G=1,2,..N) in
row 1 mustbe equal to zero,i.e., the B, E By inrow

1 must be equal to  zero(LM is the number of measured modes)
from observing Fig.6. Furthermore from observing Eqs.8 and
11, the 2%, z2®, .Z2™equal to E, ,E . Eu
respectively) must be equal to zero. Finally from observing
Eq.24, the estimated Ak, by using  the LSE procedure must
be equal to zero. Therefore the conclusion can be drawn that if
there is no stiffness degradation in node 1, then estimated Ak,
must be equal to zero. On the other hand, if Aki’j and Alg,i are
considered as a same parameter in the LSE procedure, the
estimated Ak, , may be related to other Z valsue except for those
VAR AW ("M)(equal to BB ... B respectively), ie,
Ak, may not be equal to zero(see Fig.5). Since only a
few(lower) measured modes are used in this study, generally the
{AT(P} in Eq.8 can not be solved exactly, only for its
approx1mate solution. A least-square estimation(LSE) of vector
{AK} is therefore introduced as follows

(AK) s [B]'@) (12)

where [B] " =the pseudoinverse matrix" ) of [B], also the
matrix [B] " is unique1 > When the number of independent
measurements are greater than or equal to the total number of
non-zero terms NF, Eq.12 becomes an equality, i.e., the
estimated {Aﬁ} is an exact solution.

3. SOLUTION OF UNKNOWN SCALARS FOR
MEMBER STIFFNESS

The location of damage oould be detected(indicated) by
investigating the estimated {AK} (see Eq.12), particularly the
estimated change ratio Ak; ;/ky; ;Ko #+051,j=1,2,* *

*, N) for stiffness coefficients. It is well known that a diagonal
stiffness coefficient for a node in stiffness matrix is assembled
by each stiffness of member(element) concerning with this node
in FEM(Finite element method) model of structures. Also the
off-diagonal stiffhess coefficients are made up by corresponding
member(element) stiffness. The corresponding relation between
amember and an off-diagonal coefficient is unique. Therefore,
the damaged members(locations of damage) can be detected by
investigating the change of off-diagonal coefficients in stiffness
matrix. Concretely, when a member with a remarkable change
ratio of stiffness is detected, the member stiffness kg is
multiplied by an unknown scalar «,(a=1.0, which
represents the degradation of member stiffness or severity of
damage). Note, it is not suggested by this study that damage
may be realistically modeled as above representation of
o i * kg. For the case of member stiffness degradation in plane
frame or beam structures, both the axial rigidity EA and flexural
rigidity EI should be multiplied by two unknown scalars « y ;
and «,, respectively by observing the member stiffness
matrix(the length of member is considered to be regardless of
damage). Furthermore, such a «, is contained in stiffness
matnix of the structure by assembling all the member stiffnesses
into the stiffness matrix. For instance, if a member(element)
which is joined up with nodes i and j in shear-type building
structures is damaged the off-diagonal stiffness coefficient k ;
becomes « . * k; ;, also the diagonal stiffness coefﬁments

k;; and k;; becomek;;(c,)andk; ;(a ) respectively,
ie.
ko) ok,
[K(a ] _ (13)
a,;k, kr(ak)
where o ™ represents the set of a .

In the real-part of free-vibration equation of motion for a
structure, there are N equations corresponding to each vibration
mode. If all those LM measured modes are used, the LM * N
equations for real-part can be provided by substituting K( « )
and C(o *)see Eq.5) into this free-vibration equation of
motion. Among those LM + N equations, a certain equations in
which «* is contained are available for solving the o™
Denote the number of those available equations for solving the
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o ¥ to be NE, and arrange those NE equations, the selected new
. . * .
equations regarding to o~ can be obtained as follows

M)=iC) (14)

in which {a}={a,,a,,* * *,ayny} , NU is the total
number of o *; [A] and [C] are known NU X NU matrix and
NU X 1 vector respectively. When | [A] | #0, the unique { &}
can be obtained. If NUZNE, i.e., the number of unknown
scalars o * are equal to or less than the number of available
equations for o * then theoretically the identified {«} is
exact(also if all damaged members are detected). If NU>NE, it
needs additional measured modes. After all the unknown scalars
are solved, the [K(o™)] is the estimated result of [K].
Therefore, the severity of damage can be evaluated.

As the practical global stiffness matrix of structures is an
unknown matrix, the reasonability of estimated stiffness matrix
should be evaluated. In this study, a cost function'®’ is
employed to verify the estimated and which correspond to
estimated stiffness matrix, etc. The cost function' ® is
expressed as follows

I
J=y {a‘(mﬁm—mf 2
=1

+ P -NH P -nP)

as)

in which LM =the number of measured modes; w ; ™ =the i-
th measured undamped natural frequency; n ; ) =the ith
estimated mode shape, o ; =the comesponding weighted
coefficient; H ; = a diagonal matrix that consists of weighted
coefficients' ®’ . The superscript T means a transpose of matrix
orvector. If J<< § in which § is a scalar, the estimated results
are satisfactory under the sense of condition J< § . If J= 0 , it
needs to investigate the locations of damage again or to add
measured modes until the condition J< § is satisfied. The
value of § may be taken as 0.005 ~0.01 16)

4. NUMERICAL EXAMPLE

In order to demonstrate an improvement for damage location
detection in this study, a ten-story shear-type building which has
been used in our previous studyg) is selected to be hereby a
numerical example. The FEM model of this building with
eleven nodes, ten elements and ten DOFs, is shown in Fig.1.
" Also the node numbering agrees with the story(floor) numbering
in this figure. The mass and stiffness for each story of the
structure is listed in Fig.1. Moreover, damping ratios are hereby
assumed as: & ;= & ,=2%; the calculated coefficients tn
regarding to the Rayleigh damping are: 8 ; =9.96X10" % and

8 ,=231X10" 3(see Eq.5). Because of the lack of measured
data, the analyzed natural frequencies, as well as mode shapes
are hereby taken as the measured ones. Besides, only the
first(fundamental) measured vibrational mode is used
throughout this numerical example.

To verify the availability of this method, a damage
(degradation in member stiffness) event is artificially assumed
at some stories in this building. Concretely, a 30% degradation
of member stiffness is assumed on story-3(nodes 2-3) and
story-8(nodes 7-8) respectively. Therefore the degraded member

stiffnesses k4 (story-3) and kg (story-8) are 39.30 and 28.39
Mn/m(see Table 1), respectively. Also the stiffness coefficients
corresponding to node 2 and 3, node 7 and 8 in global stiffness
matrix should be degraded. The estimated change ratios Ak;
ifkoi ko 70, 1,j=1,2,- + +, N) for off-diagonal and
diagonal coefficients of stiffness matrix by Eq.12 are shown in
Fig.2 and 3 respectively, through using the first measured
vibrational mode.
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Fig.2 Damage location detection for off-diagonal
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Fig.3 Damage location detection for diagonal
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—T728-



Table 1 Identified member stiffness
(unit: Nn/m) and error E

Before damage After damage

k:(nodes) Exact | Bxact | Ident. | E,
ks(2-3) 56.14 | 39.30|39.30 |0.0%
ks (7-8) 40.55 | 28.36]28.36 |0.0%
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Fig.4 Damage location detection for diagonal coeffici-
Lo . . 9)
ents in stiffness matrix for our previous study
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Fig.5 Damage location detection for diagonal coe-
fficients in stiffness matrix( if symmetry of
stiffness is used in Eq.10).

Note that, the estimated change ratio of off-diagonal stiffness
coefficient for a member i-j is hereby equal to Max(Ak; ; /K,
i i» Ok i/kg ;). Furthermore, the locations of damage for
members 1-2, 2-3, 3-4, 6-7, 7-8 and 8-9 are initially detected
from observing Fig.2, because the change ratios of off-diagonal
stiffness coefficients for those members are remarkable. From
observing Fig.3, however, the change ratios of diagonal stiffness
coefficients for nodes 2, 3, 7 and 8 regrading to members 2-3
and 7-8 are remarkable, the damaged members 2-3 and 7-8 are
then detected. The members 1-2, 3-4, 6-7 and 8-9 are detected
to be undamaged ones(see Fig.3 and Appendix I ), because the
change ratios in nodes 1, 4, 6 and 9 which are assembled by
members 1-2, 3-4, 6-7 and 8-9 respectively are zero. Thus, the

unknown scalars ¢« ; and « , are consequently assumed on
members 2-3 and 7-8 respectively. Fig.4 is the result of our
previous studyg) by using the same first mode. From observing
Fig.4, the damaged members 2-3 can't be detected. The main
difference between the method for Fig.3 and Fig.4 is : Under
the condition of same known parameters(the same measured
first mode), the zero-terms(hereby being as the unknown
parameters in aforementioned LSE procedure) in stiffness
matrix have not been excluded in the previous study”, On the
other hand, all zero-terms have been exlluded from the LSE
procedure in this study. So the number of unknown parameters
in this method is much less than the one in study” under the
condition of the same number of known parameters. Therefore,
the accuracy of damage location detection in the this method is
considerably improved. In this study, the percentage of an error
E, for member stiffness identification is defined as follows

- (kp)ma“(kp)lm v
T ae

The calculated error E,, is shown in Table 1 in which the
identified result is very satisfactory. Certainly the estimated
results should be verified by calculating the J function. The
calculated J is hereby less than 0.001, so the damaged members
2-3 and 7-8 are finally detected. Moreover, if the damaged
member 2-3 has not been detected, the calculated J value is
equal to 1.476 by using Eq.15( « ; =0.5, H , =1dentity matrix,
refer to study’ 7y Also T is equal to 0.271 in the case of
member 7-8 having not been detected. Besides, Fig.5 shows a
result of estimated change ratios for diagonal stiffness
coefficients in case of the symmetry for stiffness matrix being
considered for unknown terms in matrix [ AK](refer to Eq.10).
It is evident that a degradation seems to occur in almost all the
nodes(the corresponded reason will be given in Appendix I).
So, the dealing of this symmetry of stiffness coefficients in
Eq.10 is considered to be necessary.

5. CONCLUDING REMARKS

This study presents a modal analysis method which can assess
both the location and severity of damage for damped structures
by using very few measured modes. Different from our previous
studies, all the zero-terms in global stiffness matrix are hereby
excluded from the least-square estimation (LSE) procedure
which is used to detect the location of damage. Therefore, the
required number of vibration modes for this detection is
considerably reduced. As stated in numerical example, a
detection of damaged location(member of a structure) is initially
decided by observing the estimated change ratio for off-diagonal
stiffness coefficients Ak; ;/ kg ; ;(i7]) and investigating the
estimated change ratio for diagonal stiffness coefficients Ak
/K, ; ;. Theoretically, if there is a node with non-zero Ak; ;
ko jor Ak; 1 /kg ; ;,this node must be regarding to practical
damage in this method(see Appendix I ), also this damaged
location(hereby indicated by this node) can undoubtedly be
decided. On the other hand, if every location(indicated by node
or member) with zero values of Ak; j/ko; ; or Ak; /ko;; is
a practical location in which stiffness has not been changed,
then'a conclusion can be drawn that all the practical damaged
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locations are detected through observing those Ak; ;/kq; ; or
Ak;i/kg ;. So, the estimated stiffness by using Eq.12 is
unique even using lower measured modes by this method. To
prove the conclusion theoretically is impossible unless the
required number of independent measurements to exactly
identify the global stiffness matrix are provided(see Eq.12).
However, many calculated examples regarding to this study
show that the conclusion are reasonable. Besides, once a
practical damaged member is not detected, the estimated
stiffness will evidently not be reasonable, e.g, negative stiffness
or stiffness much larger than the initial values* > & , ete.
Also once an unknown scalar « . is assumed on an undamaged
member, the estimated « ,, will be equal to 1.0 by this method
under the condition without measurement error. Overall the
damaged locations are finally decided after verifying
aforementioned J function(see Eq.15).

Theoretically, the effects of measurement error of natural
frequency, damping ratio and mode shape on identification
accuracy have been investigated in our previous studies® * .
Also the application condition of this method is based on the
precise measurement of vibration. However, because of the
complexities of practical structures, sometimes it is difficult to
obtain the precise structural vibration modes. Therefore, it is
expected to verify this method for model-scale or full-scale
damped structures by using practical measured vibration modes
in future.

APPENDIX I.

The following is the theoretical basis (proposition) of which
the Ak; ;and Ak; ; inEq.10 should be considered as the
independent parameters in LSE procedure. In the proposition,
the knowledges of pseudoinverse, matrix product and matrix
inverse obtaining(elementary transformation method), etc. will
be introduced. Moreover, in order to describe the proposition
correctively and clearly, some complicate formulae and
operations had to be used.

Proposition : If there are no coefficient change at row i in
practical stiffness matrix, ie., k; ; =kg;;, the estimated
change of diagonal stiffness coefficient Ak;; by using
aforementioned least-square estimation(LSE) procedure in Eq.9
must be equal to zero. In the other words, if one of the estimated
Ak 1, Ak 4,0 0 0, Aky y; F0, at least one of the
practical Ak; 1, Ak; 4, ¢ ¢, Ak; y; F0,ie thereis
undoubtedly a practical change of stiffness coefficients at
TOW i.

Proof: The pseudoinverse [B]” could be calculated by
following equationl ©

(B =[BI"(BIBIY an

where [B] is (LM XN) X NF matrix(see Eq.9); N is system's
DOFs; NF is the total number of non-zero terms in stiffness
matrix [K]; LM is the number of measured vibration modes.
Thus, the square matrix [B] [B]T is written as

Bl
B,
Busr- B8 - Bid

IM|

BB\'BB,, .. BBy,
B,B,'BB,’, ~ BBy

18

T T T
1B Bl BuBid s e

in which every diagonal submatrix [BiBjT](i,j=1,2, .-
- ,LM) is further obtained as follows

Dl, , = 0 Y o 0
D, Dz
[B ﬂjT] ] 2 2
- -
0 - Dy llo Dy,
. W
Y TL, 0 19
p=l )
2
. § Pp Pl
"
Nn
0 E Pp p
L Pl vy

in whichthe Dy, ;, Dy, ;,* * +, Dy, ; are listed in Eq.9.
Since the subscripts i and j vary from 1 to LM, all the square
submatrices [B;B jT](i,j=l, 2,¢ + +, LM) are diagonal
submatrices respectively. Evidently the number of those
submatrices is LM XLM. Moreover, the inverse of square
matrix [B][B]T can be obtained by using the well-known
elementary transformation method, i.e

v® o v® o wP 0o 1 0o o0
~ Y Y ".

o v o vP o w® 1

v 0o B o w2 o o 1

~ “ “ N
o v® o VP .0 WP 1
H H b3
u™ o v o w0 o 1
“ n ~ N
o UP o v o wi 1

(20)

in which the left matrix is the result of (LM XN)X(LM XN)
square matrix [B] [B]T and the right matrix is also a (LM X
N) X (LM X N) identity matrix. Among the left matrix, the
each diagonal submatrix (block) corresponds to submatries
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BB, 1iB:B, ], * * *,[BraBry I, in Eq.19 respectively.
As stated before(Eq.9), the diagonal terms in the left matrix of
Eq.20 are not equal to zero, i.e.,

NI N2 Nn
OPR 0 VYT R0
>

pel p=l

where the superseripts (1),(2), ¢ + *, (LM) represent the order
of measured modes. Therefore, a series of row elementary
transformations for the left and right matrices can be done until
the left matrix becomes identity matrix.The off-diagonal
non-zero terms can be eliminated by supposing a proportion of
diagonal terms corresponded with, e.g., the U,

-, Uy M at row N+1, column 1, * + -, row ILM—1)X
N+1, column 1 are eliminated by supposing —U M.y,

074 UL IR S (1), U, am -y (1)
respectively. Simultaneously, the zero terms at row N+1,
columnl, ¢ * + , row (LM—1)XN+1, column 1 in the
right matrix( identity matrix) become —U, ) g 1

. Uy el U, a Repeat those suppositions
until all off-diagonal non-zero terms become zero(eliminated).
Furthermore the left matrix in Eq.20 becomes an identity
matrix. The right matrix is then the inverse of matrix [B] [BT].
As those suppositions only need to be done on non-zero terms,
the locations of zero terms both in the left and right matrices in
Eq.20 are kept wunchanged, ie. ([B] [BT])_ ! consists of
LM X LM diagonal submatrices which are similar to Eq.19. In
all the following statements, a matrix [A] is similar to a matrix
[B] means that the locations(indicated by row and column) of
zero terms which are identically equal to zero are totally same
to matrix B. The square matrix ([B][B"])~ ' is therefore written
as

LY

@3B =
R® o &P o 1 0
. N N
0 R® o s 0 o
R? 0o s® 0 ® 0
~ Y Y
0 R® o s 0 ¥
R0 0 s& 0 T 0
", Y .
0 R [¢2.2)] 0 S @) 0 T (LM)
] N N N Q1)
1 G c%“A(uuwaaMww

in which the LM XN)XN submatrices {G,], [G,],* *

[Gpu] correspond to block(submatrix) R4 .. Ry (L >
block S, 1 - Sy @M L T hlock T, .,
Ty ™™ respectively.Since the ([BJ[B"])” " is obtained, the

pseudoinverse [B]" could be further obtained, likes

[B]"=[B" (BB
=BG, G, ~ Gy
=BG, B'G, - B'Gp] smmsm

(22)

Because submatrices [G3], * * *, [Gry] are similar to
[G,](see Eq.21), one of the matrix product [BTGI] among
(B'G,1,[B"Gyl,+ + +,[B'Gyyl, is inspected as follows

r, 2 0 Ty 0 -
IR 0
Pu T, 2 1
H H ™
()]
PNI,I - PNI,IM 0 Ry
[B?G,]= ~ N 1
Pm,x PNZ,IM RI(IM 0
11 Pu_u X
s : 0 R’f’m (LMNN
] 1] L 0 Ty | U
I‘1,1R1a) - *Pl,z.uRISIM 0
H
1)
FNI,lRl( )+“‘+PN1 Iflm
= .
Ty R Ly
H
[ (L34)
0 CypaRn +mt Dy N | nmr
23)

From observing Eq.23, it is found that the NF XN matrix
[B'G,] is just similar to [B,]"( see Eq.9). Also matrices
[B7G;), - -+ * [B'Grydaresimilarto [B,]", * * -, [Bral”
Therefore, the whole matrix [B] (see Eqs.22, 23) is similar to
[B]T, only the values of each non-zero terms are different
between the matrices [B]* and [B]”. Furthermore, the mark T
in matrix [B]T can be changed into mark P in matrix [B]” in
order to represent the matrix [B]*. Finally, Eq.12 is expressed
in detail as follows

g0 o

¥ B ,

) mo ||
=tk @ - {0}
k 5% T2

" g B | i
|2

Y Nn 0 Nn

70 ... pFOZE0 @24

_B070..op0g08

Drr(l) :
Az + B2

in which the subscripts 1,2, * * * N of Z represent the row
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numbering of Z corresponding to matrix [ 2 ](see Eq.11 and
Eq.6). Also the superscript (1),(2), * * * ,(.M) represent the
order of measured mode. It is known from Eq.24 that the row
numberings between Ak; ; and (Z, () , L @ ..

* 2y (LM)): Lky, 5 and (Z, (1):21 @ .. .2y
WMy v Ak, yoand (Zy VL Zy P, 0 02y
) are totally same. Therefore, if there is no change of
practical stiffness coefficients at a certain row, e.g. inrow 1, i.e,,
practical Aky 1,Aky 5, ¢ ¢ ¢, Aky g

=0.Then B, 4, Eq, 4, * ., B, v must be equal to
zero(see Eqs.6 and 11, [ E] is the result of [AK][T']), ie.,
zt VA 2 /A M =g, Furthermore, the
estimated Ak; 4, Aky, 5, ¢ ¢ ¢, Ak y; =0(see Eq.24).

In the other words, if one of the estimated Ak, ,,Ak;,

0, * ¢ *, Ak yq isnot equal to zero, it means that at least
one of the Z , n 21D e e o 2™ s not equal to
zero(see Eq.24). According to Eq.6, at least one of the practical
Ak, 1,0Ky 2,0 0 ¢, Aky, yiis not equal to zero, ie.,
undoubtedly there is a change of stiffness coefficient at row 1 in
stiffness matrix. Certainly, the practical Ak;, ; (atrow 1) is
also not equal to zero(diagonal stiffness coefficient is assembled
by corresponded member stiffnesses). The proposition is
therefore true.

That the [B]” is similar to [B]" is easily to be verified by the
following supposed two DOFs system : N=2; measured mode
LM=1; NF=4(non-zero terms in stiffness matrix [K], see
Eq.10), i.e.

AR =(Ak, Ak, , A,

208k, )7 5 [C]=(1,2)7. Thus

10
B 12 00 BT2 0|
10012’[] 0o 1]’
0 2

1y

5

2
B]*=5 '[B][B]*{l 0}
L 1)’ 01

0 —

5

2

3

However, if the symmetry of stiffness coefficient is considered
inEq.10, i.e., NF=3, then

10
[B]=[12°'[B]T2 1{;
012 ?
0 2
S 2
21 21
.18 1 oo
BI'q 37 37| B8] =L 1]
_4 1o
21 21

It is evident that the matrix [B]" is dissimilar to the matrix
[B]T in the case of NF=3.
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