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Abstract--The objective of the present study is to theoretically investigate the
bifurcation and post-bifurcation behaviors of elastic space rods subject to
torsional moment in view of the application to deployable and collapsible
members In space structures. This bifurcation phenomena accompanying
extremely large rotations m three-dimensional space is referred to as Greenhill
problem. We specifically examined how the structural parameters as well as the
axial compressive force affect the buckling behaviors. The numerical results
obtained here can also be used as severe bench mark checks for geometrically
non-linear space frame elements. For this purpose, we developed a versatile
FEM-based numerical method using co-rotational technique which has no
restrictions on the magnitude of rotations in space. This method yields symmetric
tangent stiffness matrix which considerably improves the computational
efficiency and accuracy in the bifurcation analysis.
Keywords: Finite rotation, co-rotational method, bifurcation, space frame

1. INTRODUCTION

Biturcation of elastic rods under torsional moments
relerred to as Greenhill problem was firstly studied by
Greenhill“,, followed bv Grammelz’, Ziegler3) and more
recently by Kurakata and Nishino", among others. Grammel
examined how the magnitude of the buckling moment is
influenced by the cross-sectional shapes of the rods. Ziegler
investigated the effect of boundary conditions on buckling
moment and discussed the kinematic boundary conditions
which lead to nonconservative systems.

However, the post-buckling behavior of Greenhill problem
has not been studied until quite recently. This 1s because the
post buckling behavior accompanies extremely large
rotations in three dimensional space which results in a lot of
difficulties in the theoretical approach.

Miura™ and Natori et al”” " studied the post-buckling
behavior of Greenlull problem in view of the application to
the deplovable and collapsible members of space structures.
Natori et al.” examined this post-buckling behavior
analytically and experimentally. In his study, Love's
governing differential equations * for space rods were solved
numerically by shooting method. However, the solution
procedure adopted by Natori is not based on the incremental
equations. This implies that the critical points such as
bifurcation points and himits points which exist on the
equilibrium path are not precisely identified by their methods.
Further, the application of their analysis is restricted to just

one numnierical exaniple. They did not fully study the effect
of structural parameters on the buckling behavior.

The objective of the present study is to precisely examine
the buckling behaviors of the Greenhill problem including
the post-buckling range. We specifically investigated the
effects of cross-sectional shapes as well as the axial
compressive force on the buckling behavior. For this purpose,
we developed an FEM-based versatile numerical method
using co-rotational technique which has no restrictions on
the magnitude of rotations in- space. This method yields
symmetric tangent stiffness matrix which assures the
accuracy and efficiency of bifurcation analysis. The
numerical results shown here can be also used for the severe
bench mark checks of geometrically non-linear space frame
elements.

2. ANALYSIS OF RODS ACCOMPANYING LARGE
ROTATIONS IN THREE DIMENSIONAL SPACE

In order to investigate the post-buckling behavior of the
Greenhill problem, it is necessary to use an accurate method
of analysis which precisely takes in account the geometrical
nonlinearity, since this post-buckling behavior accompanies
extremely large torsional deformations in three dimensional
space. The analysis of this kind has been studied by various
researchers: L0\7e8), Antmang), Bathe and Bolouchilo), Maeda
and Hayashi''?, Yoshida et al."””, Ai and Nishino'”, Goto,
SAIS’, Goto, Y. et al, 'O , Simo and Vu-Quoczo) , Iura .
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* Iwasaki and Hayashi23), among others. Although they
proposed the theories and numerical methods that might be
used to analyze the rods subjected to the extremely large
rotations in three-dimensional space, the numerical examples
shown by them accompanied only moderate large rotations.

We have developed a numerical method " using an
incremental transfer matrix technique combined with the arc-
length method and applied it to the analysis of deployable
and collapsible elastic ri}})gs subjected to large rotations in
three dimensional space ™. In this method, the field transfer
jequations are directly derived from the rigorous governing
differential equations of non-linear space rods with
Lagrangian expressionslé)’ ® and its accuracy is assured.
However, the applicability of the transfer matrix method is
restricted to simple problems such as the two-boundary
value problem. Herein, we developed a versatile FEM-based
numerical method, based on co-rotational technique. As
incremental rotational quantities, we adopted the rotational
components around the deformed base vectors which were
also used in previous formulations using transfer matrix
technique ® Adoption of these components which can be
treated as vector quantities considerably simplifies the
procedure to derive the incremental stiffness equations,
Further, the incremental tangent stiffness matrix so derived
1s symmetric because the theorem of virtual work s used
to derive the relation of nodal force components between the
co-rotational coordinates and the member coordinates fixed
in space.

In what follows, we show the details of our numerical
method.

(1) Coordinate systems

The coordinate systems used to derive the member
stiffness equation for space rods are shown in Fig.1.
Rectangular Cartesian coordinate system (x,y,z) with base

vectors (g g g} s introduced at the initial configuration

of the member. Orthogonal co-rotational coordinate system

node@

node@ Z_
i P

ixt

Fig.1 Coordinate systems

(x,y,z) with base vectors (g,,g ,,g,) moves with the rigid
body displacements of the space member. The deformed
member is expressed by the unit vectors (i x‘,iA , g ;) Which

are obtained by normalizing the deformed base vectors
¢,.8,,8,) atnode i .

(2) Components of physical quantities

In this co-rotational formulations, we introduce two sets of
nodal force components for a beam element. One is.
expressed in terms of the member coordinates ( X, ¥, z)as

(7B R M M, MY (=1,2) o)

The other is defined with respect to the moving coordinates
(7.7.2)as

{ﬁ F fﬂ,.,,ﬂy,ﬂ,,} (i=12) @

%0yt

Similarly, we use the two sets of nodal displacement
components corresponding to the above-defined nodal force
components.

{U,=I{>VV,»¢.>9,JP,} (i=12) (3)
where ¢,,0,,; are Eulerian angles in terms of the member
coordinates (x,),z). The components in the moving

coordinates (X,),Z) are defined as
{1’71 >‘7i :Wi =é.t', ’6y, ’éz, } (j = ]’2) (4)

After the rigid body rotations are removed from the nodal
rotations, the remaining rotations become small quantities.

Thus, (éx,_ ,éy' ,62, ) 1s considered as the rotations around the

moving coordinates axes (X,y,z) and treated as vector
quantities.

The components of incremental nodal displacements in the
member coordinates (x,y,z) and the moving coordinates

" (X,7,Z) are defined, respectively, as follows

{AU,.,AV,.,AW,.,AGXI.,ABWABH} (i =12) )

{7 .05, 0%, .08,,08,.08,} (i=12) ©)

where ( A8, .76, ,Ae,q) are incremental angles around the

member coordinate axes. These incremental components are
used instead of the increments of Eulerian angles. Although
Eulerian angles (¢,,0,,7y,) are not vector quantities, the

incremental angles (AGXX,AG”,AGZX) and (A@xi,Aéyi,Aé,‘)

can be treated as vector quantities.
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(3) Transformation of coordinates

The transformation of the components between the
coordinate systems defined in (1) can be obtained by using
the matrices [R,] and [R;] as follows

>
1

—
[

K g _* 8«
iy t=[RRe,t (=12), i, t=[Rs}e, (7.8)
i, 8: i, g

[R,.] , and [R;]

are expressed by Eulerian angles

(q)i’ ei: w,) and (6 > 6 > 1—p ) as
[R]=[1R(¢,.6,w,)] (=12) )
[Re]=[R(§ .8 . )] (10)
where
6 = (¢ +¢2)/2>§ = (el +92)/2>1—P = (w1 +1P2)/2
1)
and
1 0 0
[TR(a,b,c)]= cosa  sina
0 —sina cosa
[ cosh 0 —sinb
x| 0 1 0 12)
—sinb 0 cosb
[ cosc  sine O
x f-sin¢ cosc O
| 0 0 1
Eqgn(11) implies that the directions of the moving
coordinates (1‘,1”12) 1s defined by the averaged Eulerian
angles of ( ol IA‘ )and (z,r Ay zz) From eqns (7) and (8),

the following relation can be obtained.

—~
>
-

Y

(13)

o~
I
—
=
—
=
Q
—
]

(i=12)

T
~

(4) Transformation of rotational components

Since (é 6 ) is regarded as vector quantities, the

relation between (1‘ oy Z) and (1 i z) can also be

x2°ysfz

expressed as

>
y—

— .t.CDI
o b
o

=
<

(=12 (14)

Nalh)
jard]
|
D
L
ll

3
b,

From eqns (7), (8) and (14), we have the following relation

1 6 -6,
[R]R:]=|-6. 1 8 | (=12 (15)
6, -6, 1

Considering that the relative rotations between node 1 and
node 2 are small, we have the following relations

|, =, << 1, (16)

-1[)2|<<1

Substituting eqn(16) into [R JR;]" and comparing the both
sides of eqn (15), the relation between (5& ,Ey ,0, ) and
(d;, 6,,9,) can be obtained as

_"' ?"2 1 L o b,
o, l--18, =5[BR(G,¢)] 0, L-le, a7
5| o ORG
where
1 0 -sin®
[BR(@,E))]= 0 cos¢ cosOsing (18)

0 -sing cosBcosd

The relation  between

(r6,.40,,06,) and
(Aéx_,Aéy,AQ) is derived in the following. Because
(Aéx'_,Aé' Aéz‘) are the small incremental rotations

around (zx Ay z) (i =1,2), we have

Aéx A8,
{0, 7, 18, t={e. 2, 8 {00, L (1=12)  @9)
AB, A8,
Thus, eqns (7) and (19) lead to
Aéx,- A8,
A8, t=[R}iA8,  (i=12) (20)
Aéz AGZ‘

{

On the other hand, the increments of the vectors (zx Ay ,f )

are expressed by using (AGX‘, ,AQ N ,Aez'_ ) as follows

Al 0 A, -48, ||k
Al t=|-08, 0 a8, Rt (=12) @D
Al | 48, -8, 0 |7
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Taking the increment of eqn(7) and comparing with eqn (21),
we have

A0, Ad,
a6, {=[BR(6,0,)]{ 28, (i =12) @
Aé__' A‘pf
Finally, eqns (20) and (22) yield
AQ, A,
a8, L =[R ][BR(6.0,) 126, L (i =12) (23)
A8, Ay,
Therefore, from eqns (17) and (23), we obtain
Aéx, Aéxz ([ Ag}q
26, t=-128, | =[DR ][BRO,0,)] [R}0,
A8, AB, A8,
: = ~ 24)
(A6,
+[DR,|[BR(®,,6,)] [R. {2,
A8,

([DRl} [DRl] see Appendix (a)).

(5) Transformation of translational displacements

If the origin of the moving coordinates 1s chosen to
coincide with the node 1 of the deformed member, the
tollowing equation holds

(.5 % )=0 25)
Thus,
i Uy ~ 1
v =[RG] YV, =V (26)
W, +1 Wy, =w, +1/

where / is the original length of the member. Taking the
increment of eqn(26) and using eqn(23), the following
relation can be obtained.

Ay A0, ] (A0,
Av, L =[E a8, b+[Er | A8,
Aw, AE);l J ~Aezl @7
N ) (A )
HRs ][ {Av, t-iav b
Aw, Awl‘

([Etl], [Etz] see Appendix (b))

From eqns (24) and (27), we have the relation of incremental
displacements and rotations between the member
coordinates (x,y,z) and moving coordinates (¥,V,z) as

Ai7,
AV,
AW, Aoty Avy, Ay, A8, A8, A0, , ]’
A8, [~ (2 {Au2 (Avy, Aw,, 08, ,AB, A8, }
Aéye

LA?)

22

(28)

where [R] is shown in Appendix (c)

(6) Derivation of incremental tangent stiffness equations
The stiffness equation in the moving coordinates are
simplified with the help of eqn (25) as follows

ﬁ .
T 127, 0 %
E, 121, B
& E/P & Wﬁ
e a P 8,
Ry al f 3
i, -3, N |
R 0 4G E||-
i 51, 0,
or

-l )

The above equation is based on the small displacement
theory  because  the  displacement

@9

components

(7, .7 .%.8,.8, 8, ) defined in the moving coordinates is

considered small.
The equation of virtual work  Jeads to

sf) {7} - ofay {7}

where

(30)

B{u} = {ou 01,010, 80,86, 6wy v, B0, 80,00, 06, }
Y ={F BB M M MR, F, B M, M, M,

Substituting eqns (28) and (29) into eqn (30), we have the
following relation

{r}=[R1{7}

The tangent stiffness equation can be derived by taking the
mcrement of eqn (31) as

A{7)-[KIaa)

€2))

(32)
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where | Ak | is a symmetric tangent stiffness matrix.
A o4

Eqn (32) is the generalized incremental stiffness equation
in the member coordinates. The transformation from the
member coordinates to the global coordinates fixed in space
is the same as that of the usual finite element method. The
nonlinear algebraic equations are solved by the arc-length
method combined with the Newton-Raphson iterative
procedures.

3. ACCURACY OF THE PROPOSED METHOD

The elastic buckling behaviors of deployable and
collapsible rings studied by Goto et al®? accompany very
large rotations in three dimensional space. Herein, we use
this example to examine the accuracy of the -present co-
rotational method.

The ring model and global coordinates are shown in Fig.2.
By virtue of the symmetry of the structure, only the half of
the original model is analyzed. In the example, we chose a
ring with a rectangular- cross-section whose structural
parameters are #/b =3, and R/h=20. It is important to
know how many elements are necessary to obtain the

- convergent solutions. In this numerical example, 20, 80, 120,
and 200 elements are used.

X
VY
Rectangular

Cross section

Fig 2 Ring model and global coordinates

The numerical results are given in Fig.3 in comparison
with the analytical solution * The deformed shapes of the
ring are also illustrated in Fig.4. From Fig.3, we can observe
that the numerical solution almost converges to the analytical
solution when the number of finite elements increases up to
200. This implies that the proposed co-rotational method has
a good accuracy compared with the analytical solution.

4. ANALYSIS OF GREENHILL PROBLEM

(1) Bifurcation analysis

The stability of a structural system is lost due to the
existence of singular points on the equilibrium path, referred
to as critical points, i.e., bifurcation points and limit points.
At bifurcation points, the solution of a structural tangent

stiffness ceases to be unique for a given load condition and
becomes singular. For a perfect structural system, it is
assumed that the incremental overall stiffness equations on-
a fundamental path and on a bifurcation path are respectively

MR

Elvy

0.4 120 elements ]
0.35 o AT

03 80 elements

. A
0.25 20 elements

0.2
0.15 Analytical solution

0.1
0.05 N <

MR

Elys Ox (rad)

0.4 200 elements
035
0.3
0.25
0.2
0.15
0.1

0.05

Analytical solution

Bx (rad)

Fig.3 Moment-rotation curves of the ring
with h/b=3 and R/h=20

AN RN

@ 8~/ ® 0 -n/y © O¢=37/4
o _ ,
@ “x=7 @ 8. -5m/4 ) Oy=3m/2
- Z
— - X
(®) 6,=77/4 (h) 8,=27 ¥

Fig.4 Deformed shapes of the deployable ring
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expressed by summation convention as follows at a
bifurcation point:

A{f} =[A/(]A{uf}, A{f} =[M’]A{ub}

where superscripts f and b denote the quantities on the

(33-a,b)

fundamental path and the bifurcation path, respectively.
At the bifurcation point, both eqns (33-a) and (33-b) hold
simuiltaneously, thus resulting in the following equation

[o6)of) 2]

Since (A{ub }—A{uf }) is not zero, eqn (34) holds only

(G4

when }Ak }=0 and (A{ub }—A{uf }) coincides with the
eigenvector of [A/(].

For elastic space rods with a symmetric bifurcation
(pitchfork bifurcation point) where the bifurcation occurs
without the change of applied loads, eqn(33-b) is reduced to

A{f} = [Ak]A{ub} =0 (35)

Thus, the incremental displacement A{ub } along the

tbifurcation path can be obtained as the eigenvector of [Ak]

In what follows, we use both analytical method * and the
present numerical method to study the buckling behavior of
elastic space rods under torsional moment.

(2) Numerical example )

Herein, we precisely examine the buckling bebavior of
Greenhill problem. The structural model used for the present
analysis 15 shown in Fig.5. The boundary conditions of the
rod are the same as those of the model analyzed by Natori 7,
Since the torsional moment applied to this model is
conservative, a static analysis yields a correct buckling load.
We examine the rods with rectangular cross-section as well
as the round cross-section. The constants for the rectangular
cross-section are given by

A=bh, 1, =bh/12, I, =bi/12,
3 2h = -

Subn) 19:b 1 tanh (2n -1)h (362-¢)
3 wh n=l(2n—]) 2b

E/IG=26
(Timoshenko et al.””)

If we use the non-dimensionalized torsional moment
MJI/E(, +1,)/2 as a load parameter, the governing

structural parameter for rectangular cross-section is reduced
toh/h.

3) Buckling behavior of elastic space rods with different
cross-sections

Buckling behavior of elastic rods with circular cross-
section under torsional load was firstly studied by Greenhill.
According to him, the buckling moment is expressed by

4
M, ==k %EI, 1= (37-ab)

S

where & is a constant which is dependent on boundary
conditions. In case of the rod illustrated in Fig.5, k = 2.861

X

AX

Fig.5 Analysis model

and the corresponding non-dimensional buckling moment
MI/E(l, +1,)/2 is equal to 8.988. For the rod with

rectangular cross-section, the buckling phenomenon is
caused by a distinct bifurcation point existing on the
equilibrium path. Thus, the buckling moment can be
calculated numerically by the condition that the determinant

of the tangent stiffness matrix |Ak| changes its sign from
plus to minus at the branching point. However, {Akl for rods

with circular cross-section does not change its sign, although
|Ak| becomes zero at this branching point. This is because

the two eigenvalues of the tangent stiffness matrix become
zero simultaneously when the bifurcation occurs. This
bifurcation point, referred to as coincident bifurcation point,
has to be identified by examining the change of the sign of
the eigenvalues. With the aforementioned method, the
buckling moments of space torsional rods with different /5
are obtained by both analytical method * and the present co-
rotational method as shown in Fig.6.

M:¢
E(lx+Tyy )2
10 _Greenhill's solution
8988 (k=2.861)

Analytical solution—
Present solution <

sl O
circular
cross-section X
6
Y h

b
rectangular cross-section

1 2 3 4 5 6 7 8 9 10
h/b

Fig.6 Buckling moments of space rods with
different cross-section
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From Fig.6, it can be seen that buckling moments are much
influenced by the parameter //b, that is, the buckling
moments decrease with the increase of the structural
parameter h/b. It can be also seen that the present
numerical method vyields accurate bifurcation moment
compared with those of the analytical solution.

(4) Effect of compressive force on buckling moment

As is well known, the axial compressive force decreases the
buckling moment. Herein, we choose the non-dimensional
axial compressive force with the values of P/*/m*El,, =0.3

and 0.5, as the initial load parameters, to investigate their
effect on buckling moment. The results are shown in Fig.7. It
is observed from Fig.7 that the axial compressive force has
little effect on buckling loads when A/b=z=4. Only the
shapes of cross-section govern the values of buckling loads
when h/b=4.

Mz ¢
E(lxx+Iyvv)/2
Initial axial load values:
Ptz =0
8 w2 Elxx $ MZ
. i
2 4.3 P
T Elxx
6 / P s ]
/ WL
; X
A\
*,
PN Y ¢ .
h
b
a _
o , .
1 2 3 4 5 6 7 8 9 10

h/b

Fig.7 Effect of axial compressive force on buckling moments

(5) Tracing of bifurcation path

With the co-rotational method explained in section 2, we
analyzed and traced the post-bifurcation paths of rods subject
to torsional moment.

For a perfect system, the incremental displacements along
the bifurcation path are obtained as the eigenvector of

tangent stiffness matrix [Ak]. Fig.8 shows the bifurcation
paths of rods with 5 types of cross-sections, where w, is the

axial displacement of the loaded-end and / is the original
length of the rod.

Specificaj]y, for the case of h/b=3, we trace the
bifurcation paths not only at the first bifurcation point, but
also at the secondary bifurcation point as illustrated in Fig.9.
The deformation of the rod are shown in Fig.10. In Fig.9,
point (¢) is the first bifurcation point and curve (c)-(d)-(e)-(f)
is the first bifurcation path. At point (f), the secondary
bifurcation occurs. From poimnt (f), two paths are traced. One
is a path (D-(p)-(Q-@)-(1)-(u), the other is a path (f)-(g)-(h)-

@-(). In order to ascertain which one is the first bifurcation
path, the deformed shapes at 3 points on the equilibrium
path are compared, that is, points (x1), (x2), (x3) which are
adjacent to the first bifurcation point (f) as shown in Fig.9.
As is well known, the deformed shape of space rods is
symmetric at the first bifurcation point, and this symmetry
will be kept along the first bifurcation path. However, the
symmetry will be lost if the deformation follows the
secondary bifurcation path. Since it is difficult to find out a
symmetric axts especially for deformed rods, projections of

Mz¢
E(bex+lyy)/2
6
X
s (5.23878) |
h
h
4 b b
(3. 69964)
Mz
3 ¥
JI LWO
2 1. 99880) -
1 (0.83018)
(0.34670)
0 L I n A
-1 -0.8 -0.6 -0.4 -0.2 0 0.2

W/t

Fig.8 Post-bifurcation behavior of rectangular bar

deformed shapes onto X-Y and Y-Z planes are compared at
the 3 points on the equilibrium paths as illustrated in Fig.11.
The symmetry is kept at point (x3), while that is lost at point
{(x2). Therefore, the curve (£)-(p)-(q)-(x)-(t)-(u) 1s identified as
the first bifurcation path, while the curve (f)-(g)-(h)-(1)-() is
the secondary bifurcation path.

5. CONCLUDING REMARKS

In the present paper, we have presented a co-rotational
method for space frame analysis which precisely took into
account the geometric non-linearity without restrictions on
the magnitude of finite rotations in three-dimensional space.
As an numerical example to examine its accuracy, the
buckling behavior of a deployable and collapsible ring was
calculated. The results showed that the method had a good
accuracy compared with the analytical solution if an
appropriate number of finite elements were used.

With the co-rotational method so developed, we analyzed
the Greenhill problem. It is observed from the numerical
analysis that in the case of h/b <4, the buckling moments
decrease when h/b or/fand axial compressive force is
increased. In the case of h/b =4, the axial compressive
force has little effect on buckling moments and only the
structural parameter #/b governs the values of buckling
moments.

Regarding the post-bifurcation behaviors of a perfect
svstem, it is confirmed that bifurcation occurs again on the
first bifurcation path.
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Mz¢

E(Ixx+IY.\’) /2 First bifurcation point
2 h/b=3
First bifurcation path
1.5
Secondary bifurcation path
1
0.5
0 L T R R R R S T LTI )
0.5 (u)
-1 (f) Second bifurcation point-
' ' ' 1
-1 -0.8 -0.6 -0.4 -0.2 0

(e)

(q) (r) (1) (u)

(a) Deformed modes on the first bifurcation path

.
~ >

(g) (h) (0 (i

(b) Deformed modes on the secondary bifurcation path

Fig.10 Deformed modes
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(a) Projections onto the X-Y ‘plane

(b) Projections onto the Y-Z plane

Fig.11 Comparison of deformed modes of
points (x1), (x2). (x3)

APPENDIX
(a).
172 .~ JoosB /4 -sinf /2
DR ] —-(qx: -, )cosgws$ J4+ (Wz - 1)sin§sin$ 14+ Bsing) 2
= - — cosisin
[ox (6. -8, )sind /4 cos (2
(w: —\pl)oosBsin$/4+ (1];2 —w,)sinaws$/4— 3 5/2
- — €osY cos:
(6. -8, )costr/ 4 sind /2
-2 by, --wl)w5514 sin® /2
[DRZ]= —(w: "Wl)cfse cosp /4 + (w z_‘Wn)Si”e sing /4 - —cosgsin$ J 2‘
(B =8, )sind 14 cos /2
(ll’: —1p,)cos§sin<$/4+ (wz—ﬂp,)sin§ws$/4+ Beosi /2
— — ~cost cos
(8: —01)cos¢/4 sing /2
(L).

(1] [EY D] BR(E3)][BR0,4.)] [R]

1

(6] -5 [E) ][ BR(0.8)][BR(0,.6,) [%.]

where

3

-b b, by a a a 0 0 0

a, =cosBcosV, a, =cosBsin®, a
b, = —cos §sin +sin hsin Gcosp,
b, =cos$cos\ +sin PpsinOsinP, b, =sinpcosh
¢, =sin psinP +cos sin OcosP,

¢, = —sin pcosP +cos Ppsin OsinP, c¢; =cospcosO

and

[, —u 0 0
v, =V, 0 0
wy =w, +/ 0 0
0 Uy — 1 0
[D]={ o v, =V, 0
0 w, =w, +/ 0
0 0 uy —u,
0 0 Vv, =V
{ 0 0 w, =w, +1 ]
©).
[R]: '{R;] [Etl] . [RG] [EZ2]

[ Am[Eaa]1R] [ {or]Ee.e)] (&)
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