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In this paper, Twin Shear Stress Unified Yield Criterion is employed for
elasto-plastic analysis of rotating disc and cylinder. The existing solutions in
view of Tresca Criterion, Mises Criterion and Twin Shear Stress Criterion
are special cases of or in proximity to the results of this paper. This solution
is suitable for a wide range of materials. From the analytic solution and
illustrations in this paper, we can see that it is very important to choose
reasonable yield criterion for structure design.
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1. Introduction

Rotating disc and rotating cylinder, as shown in

Fig.1(a) and (b), are often-used engineering members.

For example, they are often used as the vane wheel
and the rotating axle of propeller in civil engineering
and mechanical engineering. When disc or cylinder
rotates at angular velocity o with increasing
magnitude about axis, which is perpendicular to its
plane and passes through the center, the stresses and
displacements caused by centrifugal force are
axisymmetric, i.e. O,, 0, and radial displacement u,
are only related to radius r. Rotating disc is in the
generalized plane stress state, and rotating cylinder is
in the generalized plane strain state. Ref.D employed
Tresca Criterion for elasto-plastic analysis of
rotating disc. It pointed out that analytic formula for
elasto-plastic field of disc can not be obtained with
Mises Criterion because of the nonlinearity of its
formula, and Tresca Criterion has apparent
shortcoming because it only considers the effect of
two pricinpal stresses. In recent years, Yu?™3) set up
a new system of strength theory, which is called

Twin Shear Stress Unified Strength Theory. The
criterion applied in this paper, which is called Twin
Shear Stress Unified Yield Criterion, is a part of it.
Twin Shear Stress Yield Criterion considers effect
of all the three principal stresses, it has clear physics
conception and linear formula.  Also, Tresca

Criterion is special case of the unified yield criterion,
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(a) Rotating disc ' (b) Rotating cylinder

Fig.1 Model



and Mises Criterion can be proximated by it.

Solutions deduced with Twin Shear Stress Unified
Yield Criterion are suitable for many kinds of metal
materials and engineering structures.

2. Twin Shear Stress Unified Yield Criterion

A physical interpretation of Twin Shear Stress

Unified Yield Criterion may be established as follows.

It is clear that there are three principal shear stresses
Ty3, Ty, and T, in the three-dimensional principal
stress state as shown in Fig.2(a). Here 0y, 0,, 0; are
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(a) The three-dimensional principal stress state

(¢) T35, Ty, adted on the orthogonal octahedron

Fig.2 Twin shear elements

principal stresses, and t;; = 1/ 2(0] - 03),

v, =1/2(0,~0,), 1, =1/2(0,-0;). Among T,
T),, Ty, only two principal shear stresses are
independent variables, and the maximum principal
shear stress is equal to the sum of the other two , 1. e.
T); = Ty, + T,p;. According to the twin shear idea, two
twin shear element models of orthogonal octahedron
are obtained as shown in Fig.2(b) and (c).
Considering the two large principal shear stresses
and their different effects on the yield of materials,
formulae of the Twin Shear Stress Unified Yield
Criterion are given as follows,

T3 +bt, =C when 71, 27Ty (1a)
T3 +bT,; =C when T, <7y (Ib)

Twin Shear Stres Unified Yield Criterion assumes
that the yielding of materials begins when the sum of
the largest principal shear stress and weighted
intermediate principal shear stress bt,, (or bty)
resachs a magnitude C. C 1s material strength
parameter. b is weighted coefficient that represents
the effect of intermediate shear stress on the yield of
materials and 0sb=<1 The magnitude of these
constants can be determined by experimental results
of triaxial test, 1. e..

Formulae (1a), (1b) can be rewritten in term of
principal stresses as follows,

o] —L(boz +0y) =0,

2
I+b (%)
1
when o, 5—2—(01+03)
L (0,+b0y)-0;=0, (2b)
1+b

1
when 0O, = 5(01 +0y)

here O, is uniaxial yield strength of material.

Fig.3(a) is limit trajectory of Twin Shear Stress
Unified Yield Criterion in plane stress state,and
Fig.3(b) is projection in m plane of limit surface of
Twin Shear Stress Yield Criterion in three
dimensional stress state. When b varies from 0 to 1,a
family of convex yield criteria that are suitable for
different kinds of metal materials are deduced.

The follwing criteria are special cases of Twin
Shear Stress Unified Yield Criterion.
® b=1,Twin Shear Strress Yield Criterion,

(suggested by Yu?), can be adapted for the
materials with shear vield stress T, = 2/30,,



1
@ b=—, b=—"~ Weighted twin shear stress
27 1+ \E s
yield criterions, adapted for that T, =0.60,,
T, = 0.5770,

@  b=0, Tresca Criterion (single shear stress yield

criterion), adapted for that T, = 0.50;
The curve of Mises criterion in plane stress state is
an ellipse and limit surface of it in three dimensional
stress state is a cylinder. It interposes between the
two curves of the unified vield criterion of b=0 and
b=1. Criterions of @ can be approximated linearly to
the Mises Criterion.
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(a) Curves in plane stress state
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(b) Projection trajectories in three dimensional
stress state
Fig.3 Twin Shear Stress Unified Yield Criterion

3. Basic Equations of Rotating Disc

Assuming that radius, thickness, material density
of disc are respectively a, t, P, the stress state of

each point satisfies 0, =0y, 0,=0,, 0;=0,=0,

when disc rotates at constant angular velocity .
Equilibrium equation of rotating disc is

do. o -

4 90 7% 4 per =0 (3)
dr r

plastic region [ elastic region
(a) Radius of plastic zone is smaller
A 0
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(b) Radius of plastic zone is bigger
Fig.4 Radius of plastic zone

With increase of rotating speed, yield of the disc
starts from the center point (r=0). When disc is in
elastic limit state, stresses at the center point satisfy
O,lro = Oglieo=0,. It is seen from Fig.3(a) that
Tresca Criterion, Mises Criterion and Twin Shear
Stress Unified Yield Criterion overlap at the same
point A in this circumstance, thus elastic limit
rotating speed w, deduced from these three criteria
respectiviverly are the same as follows,

1 8o
=— |—T5 4
e ay(B+v)p “

here v is possion ratio.
When rotating disc is in .elasto-plastic state,



stresses satisfy Oy z 0, 20, =0, stress state in
plastic region is on the two sides AB and BC in

Fig.3(a). There are two possible cases of plasticity, 1.

e,

(1) when radius of plastic zone is small, as shown
in Fig.4(a), stress state of whole plastic zone is on
side AB in Fig.3(a), stresses in elastic region only
satisfy equation (3);

(2) when radius of plastic zone is bigger than a
specific value of 1, as shown in Fig.4(b), stress state
of plastic zone is on sides AB and BC. Here G in
Fig.4(b) is supposed to be corresponding to point B
in Fig.3(a). Stresses in elastic region only satisfy
eqaution (3), too.

In the special case that point E and point G in
Fig.4(b) overlap, the first case and the second case
are identical. That is the demarcating state of the two
cases. Equations of line segments AB, BC in Fig.3(a)
respectively are

AB: L0r+—l——oe =0, (5a)
I+b I+b
b
BC: ¢gy~—0, = 5b
L TP e (°b)
Boundary conditions and continuum conditions

corresponding to the first case are

a) 0,],.,= 0 at point D,

b) 0,),_4 and G,|,_4 are continuous at point E,
¢) 0,|,_, is a definite value at point F.
Boundary conditions and continuum
corresponding to the second case are

d) o,],., = 0 at point D,

e) 0,4 and Oyl,_4 are continuous at point E,
f) 0., is a definite value at point F,

8) 0|, and Og|,_, are continuous at point G,

h) Gelr

conditions

=20/, atpoint G.

=Iy

4. Elasto-Plastic Stress Field of Rotating
Disc

1) In the first case (Fig.4(a)), stresses in elastic
region, plastic region deduced from equilibrium
equation (3), limit condition (5a} and conditions a) ~
¢) are

o, =0, - g)wb r?
* " when O=sr=d 6)
bpw” ,
Gy = O, + r
3+b

4

o, =0, -pn*(Cd> +C2§2—+ C,r?)
r
4 (7
Oy = 0, - pw?(C,d* = C, — + C,r")
2
when d=<r=a
where
_1-b  1+v B l+b 1-wv
6420 477 6+42b 8
o] 1 bl
C3=°+U_C4= +3v
8 7 8

When the values of parameter b and Possion ratio v
are given, C,, C,, C; and C, are determined, so we
can get the stresses in elastic region from formula (7).
And @ in (6), (7) satisfies,

2 4 2
pa =cz(i) +c1(9) +C, 8)

(V) a a

s

2) In the second case (Fig.4(b)), stresses deduced
from equilibrium equation (3), limit condition (3a),

(5b) and conditions d)~f) are

5 when O=sr=r, (9)

! 2
gr_ _ CS _ Cs(&jhb _ C7(ij
O, T Iy

! 2
Gy _ . bC (r_o)ﬁ_éc_v T
o,  1+blr L+bi

when 1, =r=d

(1)

( i

2 1—3 d 2
%o - cg(ﬂ - CQ(LOJ - clz(F)
o, I, , d I,
2 L 2 2
HOBRI00
r)\d I r
{ (11)

2 L 2
%e Cs - Cla(’r_) - C9(&)Hb + Cll(g)
0 Iy d To

1

d (1, \isb d ’ dy
aff) (8] -al3) (0

when dsr=<a




And w can be obtained from the following furmula,

3+bo, 1
w = —s
V2+b p 1,

(12)

1, satisfies

1
3+b . (Y’ LY (dY (g Y
f“o)-a—bcﬂ(z) ‘C”(Ej H (;
2 2 L 2
I 2+b d r, l+b( 1
el ) +Sraly) ol 37 (2] o

(13)

here

2b(1+b)
C5 =1+b,C6=—3:*2€v

_ (1+b)(3+D) C

>

_3+U2+b

7T (B3+2b)(2+b) Y 8 34+b’
_ b(l+2b) b
7 3420 0 M 34207
c =(1—U_ 1 )2+b
H 8 6+4b/)3+b°
C _(1+U_ 1+2b)3+b
27 4 6+4b J2+b’
c._1#3v2+b . b2+b)
BT g 3+b” M (3+2b)3+b)’
(1+b)(2+b) b(1+2b)(2+b)
Cs=——77"Cs=—F—

3+b T (3+2b)(3+Db)

5.  Solution Procedure and Results

Solution procedure of stress field contains the

b o
(N

following two steps,

1) determination of the radius of plastic zone d,
of the special state demarcating the two different
cases. In this demarcating state, points E, G overlap,
and d,=d =71,

Assuming £,(d,) = £(r)|,, , d, satisfies

1-v  1+b d. )
%Q%>=( 8 _6+2b)(fJ
+

2 2 b
. 1 ”o+3(1+b) (doj _3rv g
4 23+b) [\ a 8

(14)

2) when radius of plastic zone d 1s specific, and
d =d,, limit rotating speed w and ©,, ¢, can be
deduced from formulae (6), (7). When d, =d <a, r,
are deduced from formula (11), then substituting r,

in formutae (9), (10), ©,, 0, and elasto-plastic limit
rotating speed » can be derived from formulae (9),
(10).

The deduction process presented above can
converge quickly, and then the elasto-plastic limit
rotating velocity and centrifugal stress field are
solely obtained. Fig.5 are stress fields with different
radius of plastic zone d. Fig.6 shows the relation of
angular velocity to plastic zone d. Fig.7 is
geometrical representation of plastic limit angular
velocity ®, of circular disc against material

parameter b. In elasto-plastic state, stresses of each

‘point of the disc are variable with parameter b. When

b=0 (Tresca criterion), the derived stress is the
smallest, and when b=1 (corresponding to Twin
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Fig.5 Stress fields with different plastic regions, v = 0.5,05 = 0,/0, , of =0, /0,
(b=0.0, Tresca criterion; b=0.5, approximity of Mises criterion;
b=1.0, Twin Shear Stress criterion)
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Fig.6 Relation of angular velocity to the radius
of plastic zone

Shear Stress Yield Criterion), the deduced stress is
the biggest®:?). When b=0, there exists 0 = 0, in the
plastic zone of the derived elasto-plastic stress field,
but when b =0, g, in the plastic part of elasto-
plastic stress field derived from Twin Shear Stress
Unified Yield Criterion and Mises Criterion are
bigger than og. The bigger the extent of plastic zone,
the greater the effect of value of b on the stress field.

6. Plastic
Cylinder

Limit Analysis of Rotating

seesa O b=0.0 --- 9% b=0.0
ol b=0.5  ------ g® b=05
o-8-9-8-0 0@0 b=1.0 Oro b=1.0
(d) d=a
1773 plastic region
waf®?
c!
1.90
1.85
% d=a
1.80
175
1.70 S
0.0 0.2 0.4 0.8 0.8 1.0

b
Fig.7 Relation of b to plastic limit angular

velocity o,

Elastic solution of non-compressive perfect
clasto-plastic rotating cylinder is as followsD,
1 20,2 2
0, =0y =§pco a‘-r
(13)

1 2(1 2 2)
0,=—pw| —a —r
2 2

It is seen from formula (15) that there exists
0, = 0, = 0, = 0, 0; = 0,. Stress state is situated at



point A' in Fig.3(b). Stress state deduced from
Tresca Criterion, Mises Criterion and Twin Shear

Stress Criterion respectively overlap at this point.

Formula of this stress state is

09 - 0‘z = Gs (16)
Substituting formula (16) in (13), we get
2
0, =W, =— /g a7
ayp

So elastic limit rotating velocity equals plastic limit
rotating velocity for circular cylinder, ie., when
w=w,, each point in the cylinder yields
simultaneously, and the limit velocity deduced in
view of Tresca Criterion, Mises Criterion and Twin
Shear Stress Yield Criterion respectively is the same.

Substituting ®, in formula (15), we can get the
similar centrifugal stress field as follows,

2
O, =0y =20, 1—;2—
2
g, =20{l—r—2J
2 a

7. Conclusions

(18)

(1) In this paper, Elasto-plastic stress field and
elasto-plastic rotating speed of rotating disc and
rotating cylinder are studied for the first time by

using Twin Shear Stress Unified Yield Criterion.

Existing solutions are all the special cases of or in
proximity to the results of this paper.

(2) A series of different yield criteria can be
derived by choosing different value of b in Twin
Shear Stress Unified Yield Criterion. b has no effect
on elastic limit rotating speed of rotating disc and
rotating cylinder, but it affects plastic limit speed a
lot.

(3) The difference ratio of maximum plastic limit
rotating speed, derived with Twin Shear Stress
Criterion (b=1) to minimum plastic limit rotating

speed deduced with Tresca Criterion (b=0) is 14%.

So in view of economy, we should choose the yield
criterion carefully in design.

(4) Twin Shear Stress Unified Yield Criterion
used in this paper, is special case of Twin Shear
Stress Unified Strength Criterion. It is only suitable
for metal materials. In future, members or structures
consisting of concrete, rock and soil, will be

analysized with Twin Shear Stress Unified Strength
Criterion. Thus a new system of unified strength
theory, which has concise physical concept and
simple mathematical formula, may be applied to a
wide range of material nonlinear analysis by finite
element method. ’
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