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STIFFNESS DEGRADATION IDENTIFICATION OF STRUCTURES
USING MODAL. ANALYSIS

Hongying YUAN*, Kiyoshi HIRAO**
Tsutomu SAWADA*** and Yoshifumi NARIYUKI****

A spatial domain, modal analysis method is presented to identify both
the location and severity of stiffness degradation for damped structures
by using lower measured modes. For small deterioration, it is difficult
to detect the location of stiffness degradation using those lower mea-
sured modes. A two-stage least-square estimate procedure is then proposed
to deal with such problem. In order to demonstrate the availability of
the method, a ten-story shear building has been analyzed. The numerical
result shows the proposed procedure is useful for detecting the minor

stiffness degradation of structures

1. INTRODUCTION

Identification or correction of structural parameters(mass, damping and stiffness) is often
based on experimental data obtained from the real system. This kind of experimental
data is a reference of the identification or correction. In most cases, responses or modal
parameters{natural frequency, mode shape and damping ratio) are major candidates of those
references. The commonly used references are summarized as follows.

In the time domain, a measured time-domain response is the simplest reference. The associ-
ated identification or correction method is often referred to as response fitting. This
method has a long history of development with many applications'’ " ? ' *’ .  The modal para-
meters can also be extracted from the recorded response by performing various time domain

modal analysis*’ . However, in this domain, it is noticed that sometimes the accuracy
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of identification is greatly influenced by noise'’.

In the frequency domain, the frequency response function(FRT), as well as the fast Fourier
transformation(FFT) of a time domain response(transfer function) is commonly used as
references. Other references in the frequency domain include various modal parameters
obtained by performing frequency-domain modal analysis. Usually, the parameters so
obtained must have better signal-to-noise ratio®’. Among these references, natural
frequency is the most convenient one.

In the spatial domain®’, the references are directly measured mode shapes and other modal
parameters. Because of intense computations involved, as well as the identification
accuracy being highly dependent on measured mode shape® , references from spatial domain
are rarely used. [However, with the recent improvement of vibrational testing technique” ' ®,
the spatial-domain method has been made a certain development. As the instrument for
earthquake record is installed only in a small number of important structures, but not
most structures. Therefore, an evaluation of damage or an improvement of analytical
model for structures through those spatial domain methods has a practical significance if
the data obtained from ordinary vibrational testing is available

For structures, measurement of modal parameters can lead to estimation of the elements of
mass and stiffness matrices by using system identification techniques. However, in civil
engineering, data in field test are rarely complete® . Only a limited number of degree of
freedom and modes are observed in the response records. Adequate control of excitation is
essential for precise mode shape measurement, but it may be difficult to achieve in the
field. For example, the error in a measured mode shape could reach as high as 500%™ . In

8 of vibration

spite of those difficulties, there ate still many inspiring reports
testing for practical structures. This testing method is not only practical but also
provides accurate modal parameters. Therefore, using those modal testing techniques, it
is possible to obtain reliable experimental data for system identification

There are many studies® ' ® to identify the degradation of stiffness: Hearn and Testa®
estimated the damage of welded steel frame and wire rope by using the ratios of changes in
natural frequencies; Yuan and Hirao et al® estimated both the location and severity of
damage for undamped structures by use of the lower measured modes. However, there are
still several problems® in those current modal analysis methods. One of them is regarding
to the sensitivity of detection, i.e., only the location of severe damage can be detected

for practical structures®:® 11,

An recent attempt for improving the sensitivity is that
Yao et al''’ detected a location of minor damage for steel frame by using the strain mode
shape (SMS) technique. In Yao's method, however, it needs a lot of measurement stations
for complex structures.

In order to improve the sensitivity for detecting the location of damage, based on our pre-

> for undamped structures, this study 1) presents a spatial domain, modal

vious study®
analysis method for damped structures; 2) proposes a two-stage least-square estimate
procedure to detect the location of small degradation of stiffness; 3) evaluates the
effect of measurement error of modal parameters(includes the damping ratio) on identification

accuracy.
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2. MODAL ANALYSIS INSPECTION FOR DAMPED STRUCTURES

(1) Basic formulations

A equation of motion for damped, free vibration system with N degrees of freedom is des-
cribed as follows

DOAZ )+ [CHZ b+ [KIZ },=(0);  p=L2,...N . (1)
where [M]=mass matrix, [K] =stiffness matrix and {Z },= the vector for pth mode of relative
displacements.

The Eq. (1) is satisfied'?’ by

@ y,=X},ekt
where u, is the pth complex natural frequency and (X}, is pth eigenvector corresponding
to i .. Substitution of Eq. (2) into Eq. (1) yields

el (M, e+ [ K, T, =100 (3)

Since eu"t

is non-zero, Eq. (3) becomes
MU o 2+ [0 K e+ KT XY p=00) (4)

For damped structures, if the lower L modes have been measured, these modes can be expressed

as follows
[Q2%)ixe =diag (s p2? ... u®) , (@I = C {X:} . (Xo} oo, X0} ) oo, (5)
Replacing'® the 1, and {X}, by [Q?] and [®] respectively, Eq. (4) becomes
MifellQsl+[cl[®l(Q}+KI[®I=[0 (6)

Traditionally, Rayleigh damping has been assumed in most dynamic structural analysis be-
cause it is e¢onvenient for mathematical treatment. The damping matrix for Kayieigh damping

may be written as

[Cl=g.M+p.1 n
where B, 8:=scalars. For Rayleigh damping, substituting Eq. (7) into Eq. (4), yields

M Kb (s Bau ) + KT (Ban,+1)=0} (8)

Eq. (8) can further be written as

K1 (Xbo=MMI (X}, {~(u,*+tBus) (Bu,+1}y (9)

For undamped system, a generalized eigenvalue problem is expressed as

Kl {X} =M1 X}y, p=1,2,...,N (10)

where w, is the pth undamped natural frequency, {X}, is the pth normal mode shape
Note that the Eq.(9) is also a form of generalized eigenvalue problem.  Therefore, the re-

lation between w, and x, is as follows

wo= {=(B1+ 820,20+ (B1+ 820,92 ~40,2 } /2L (1)

Particularly for Rayleigh damping, because of'*’

1 ,wy=B1+B0," (12
where & ,=the pth damping ratio, Eq. (11) becomes

Le=—E,0,Tiw,; i*t=-1 U (18)

where w,=the pth damped natural frequency. Thus, the eigenvalue problem for Rayleigh

damping is transformed into an undamped, generalized eigenvalue problem. Furthermore,
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the pth undamped natural frequency is obtained from

W, =W, A1-E,?

Also for Rayleigh damping, the coefficients B: and B can be obtained'*’ as follows

Bi=wiw, QE:0.—28102) / (01"~ w3:?)

B:= QFiw:1—28,0:) / (w:iP~w.) . (15)
(2) The extension of modes

As the number of measured modes is often limited in civil engineering, it is difficult to
detect the location of damage by using such lower measured modes for small deterioration.
According to our previous study® , the sensitivity of detecting the location of damage is
closely related to the number of measured modes(known modes) of structures, and the
detected location of damage remains unchanged within a certain range of measurement
error. Furthermore, even an approximate modes may be used in the damage location
detection. This fact leads us to estimate the unmeasured modes(unknown modes) and then to
estimate the change of stiffness.

In steel or RC structures, cracks reduce stiffness without loss of mass, and a corrosion
loss will affect stiffness to a much greater extent than it will affect mass. Therefore
[AM] can be taken as zero® . Paying attention to the condition [AM]=0, the set of
measured modes shapes can be extended as follows.

For every unknown {X},(s=L+1,L+2, ..., N) of damaged structures, the orthogonality condi-
tion becomes

QT =00 r=100000 0 L

{X}.TIMI (X}, =1
where {X}:=the rth measured mode shape and L=the number of measured modes. It is noticed
that there are L equations in Eq. (16). Let {X}.={Xo}.+{AX}., in which {Xo}, is the sth
mode shape of undamaged(a known vector) and {AX}, is an unknown vector representing the

change of the mode shape before and after the damage. Therefore, Eq. (16) can be written as

(XTI {AXY .= — (X} . TIM] (X} & r=1,2,....,L. . (18)
Also Eq. (17) becomes
{Xo} s TIMI {Xo} s + {AX} T IMI (Ko} o+ (Ko} L TIM{AK  H AKX, TIMT (AKX =1 ol (19)

Theoretically, Eq. (19) is considered as a nonlinear planning problem. Since the {AX}. is a
vector, it is not difficult to prove the {AX}.T[MI{Xo},={Xo} ."[MI{AX},. Also because
of the existance of orthogonality(before damage), ({(Xo}, [M]{Xo}, is just equal to 1.
Neglecting second-order terms®’ in Eq. (19), the nonlinear planning problem is then
transformed into a linear one. That is

{Xo} s "IMIH{AX) . =0

Egs. (18) and (20) are a group of equations corresponding to every {AX},. Furthermore there
are N unknown components in every {AX}., and there are L+l known equations in Eqs(18) and

(20). Accordingly, Eqs(18) and (20) can be expressed as the following form of matrix equation

GIH{AXY =1 (21)
where [G] vy = [{X}“[M], {X}."[M], ..., {X).TM1, {Xo}."[MI] and {H} crvyxi = {— {X}."[M]
(Xob o, = (X}TOMYI{Xo} s, ..., — (X} L"IMI{Xo},,0} 7. Therefore, the least-square’® estimate
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of the vector {AX}, is

{AXye=TL6G27HY (22)
where [G]"wxc+1) =the pseudoinverse matrix of [G]. Note that, the s varies from L+l to N
The set of mode shapes can be extented for arbitrary order of mode shapes. Furthermore
let @ s=wostAws and &s=E o, +AE,. In the case of Rayleigh damping, substituting the
ws and £, into Eq. (12), similar to Eq.(21), the Aw, can also be estimated from

200s ANEF (28 0:—2B8:00) Aw=F1—2F 0s@ost+B.wos® . (23)
where s=L+1,L+2,...,N. After w?, and {X}, are estimated, the set of modes [Q*] and [®]
can be extended by treating the w?®. and {X}. as the known modes
(3) Two-stage least-square estimate procedure

The objective of the identification in this study is to obtain the stiffness degradation
of damaged structures. The undamaged structural parameters{i.e. [Mo], [Co) and [K,]) are
considered to be the known parameters(for example, structures remain in elastic stage before
damage). Let [K]1=[Ko]l+[AK], in which [AK] is the change of stiffness matrix before and
after the damage. Since the eigenvalue problem for Rayleigh damping has been transformed
into the undamped eigenvalue problem. Substituting the [K]. [M] and set of L undamped
natural frequencies [Q*] and mode shapes [@®] into Eq. (10), [AK] is then expressed as

(AKI[®I=[MI[Q][Q2*]—[KoI[@D (24)

In Eq. (24), there are N(N+1)/2 unknown coefficents of [AK] and NXL equations (L is number
of measured modes). I[f L<(N+1)/2, the approximate solution of [AK] can be obtained. Also
the least-square'® estimate of the matrix [AK] is

[AKl= (M[®1[Q1-[GIeD [ (25)
where [®]7Lxn =the pseudoinverse matrix of [®].

In order to detect the location of damage, let’s substitute the undamaged global stiffness
matrix [Kol, the mass matrix [M], the undamped natural frequency [Q.?] and the measured
mode shape [@.] into Eq. (25).  Furthermore, a percentage of change ratio Akys/Koss{p=1,2,

N) for diagonal stiffness coefficients are calculated. According to the magnitude

of the change ratio, the node with a remarkable change ratio is therefore detected
In this study, to estimate the change of stiffness directly(see Eq.(25)) is called one-
stage estimate method. Furthermore, to estimate at first the unmeasured modes(see Eq. (22) and

Eq. (23)) and then to estimate the change of stiffness is called two-stage estimate method
3. SOLUTION OF UNKNOWN COEFFICIENTS

When the node in which the stiffness has been changed is detected, each non-zero stiffness
coefficient in the column(or row) corresponding to this node in global stiffness matrix
[K] is multiplied by an unknown coefficient a« respectively. Thus, the damaged stiffness
matrix [K] is expressed as [K(a)], in which a={a,, a2, + + -, @xr}” and NF=the total
number of a@. As for the further details, see our pervious study®’. Therefore, the
damping matrix [C] is expressed as a function of a by substituting the [M] and [K(a)]
into Eq. (7) for Rayleigh damping

In the vibration equations of motion, there are N equations corresponding to each mode. I[f
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all those L measured modes are used, the LXN equations can be obtained. Substituting the
measured [Q*], [®], together with [MI, [C(a)] and [K(a)] into Eq.{10) for Rayleigh
damping, and further arranging the L XN equations, the following new equations are
therefore obtained

(Al{ey={By (26)
where [A] and (B} =a known NFXNF matrix and NFX1 vector respectively. When | [A] | #0
the exclusive {a} can be obtained. If NF>L N, it needs additional measured modes.
After all the unknown coefficients {a} are solved, the [K(a@)] is the identified result

of [K]. Therefore, the serevity of damage can be identified

4. EVALUATION OF IDENTIFICATION ACCURACY

Because the real damaged stiffness is an unknown value, it cann’t be evaluated that the
identified result is an exact one or not. However, on a certain significance of measured

modes, the identified result could be evaluated by some formulae® ' ® .

If the system s
stiffness matrix [K] and damping matrix [C] are identified, the modal parameters cor-

responding to this system can be obtained from Bq. (10). Similar to a least-square cost

function'®, a formula of error evaluation is defined as
N
J ZZI: o, ™ —w, V) +(, ™=, "), ™ -, 2n
D:
where @, ™ =the measured pth natural frequency: ¢ . =the pth identified mode shanes.

The value of J indicates whether the identified result is close to the measured one OT

not. In general, a recommended value of J should be®’ less than 0. 1.
5. NUMERICAL EXAMPLE

Fig. 1 shows a numerical example of a ten-story shear building'™. The structure is des-
cribed as a FEM model with 11 nodes, 10 elements and 10 degree-of-freedom. Also the
order of nodes agrees with the numbered levels in the model. The undamped natural frequen-
cies and damping ratios of the structure are listed in Table 1. Furthermore, the initial
(before damage) coefficents of stiffness (unit:10°xN/m) are : ki1=121.730; ki»=-59.260;
Ka2=113.400; k23=-56.140; kss3=109.160; ks«=-53.020; kes=199.810; kas=-49.910;
Kss=96.700; kss=—46.290; kes=90.460;Ks-=-43.670;k,,=84.220; k,s=-40.550; kss=T77.980;
Kea=-37.430; keo=T71.740; ko, 10=-34.310; K10, 10=34.310; kov=kap(p,s=1,2,...N). The other
coefficents of stiffness are zero. The coefficents of mass(unit: 10°xkg) are: Mi1=179;
Meo=1T70; Mss=161; Msu=152; Mss=143; Mes=134; M7y =125;Maa=116; Msoa=107;
Mio, 10=98; else M,.=0 (p#*s, p,s=1,2, - « -,N). The damping ratios & and &. are
equal to 2% also the &~ &, are calculated by Bq. (15) and Eq. (12). In civil engineering,
the stiffness degradation is considered as the result of seismic damage'® in both full-scale
structures and small-scale models. In this example, it is assumed that, a damage occurs

in element 3 (level 2-3) and element 8§(level 7-8). If the damage is expressed as a
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Level Stiffness Mass

98 Mg

107

116

125

134

143

152

161

170

179

Fig.1 Ten-storey shear building

in numerical study.

Table 1 Natural frequencies

and damping ratios

BEFORE DAMAGE AFTER DANAGE

N | () £, | £, £,

I 0.5007 0.020] 0.480[ 0.054

2] 1.326| 0.020| 1.284( 0.037

3§ 21510 0.0271 2.097! 0.035

41 2.934] 0.035] 2.8381 0.051

5 | 3.653] 0.0421{ 3.500| 0.060

6 | 4.292| 0.049| 4.076| 0.068

T 4.836| 0.054| 4.791| 0.078

8 ] 5.272| 0.059 5.109( 0.083

9 ] 5.590| 0.063| 5.288 | 0.085

10 5.787) 0.065| 5.633 0.091

m: BEFORE DAMAGE
e: AFTER DAMAGE (EXACT)
a: AFTER DAMAGE(ESTIMATED)

10

Fig.2 The estimated 5th mode shape by using

the 1~4th measured mode shapes.
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Fig.3 Damage location detection by using

the 1~4th measured modes.

Table 2 lIdentified coefficents of [K].

BEFORE DAMAGE AFTER DAMAGE

NODE |  EXACT | EXACT | IDENT. Epp

2 113.400 | 98.558 | 98.558 | 0.0

3 109.160 | 92.318 ; 92.318 [0.0

1 84.220| 72.055 | 72.055 0.0

8 77.980 § 65.815 | 65.815 [0.0
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reduction in cross-section properties® in
those elements, the coefficents of stiffness
in nodes 2,3,7 and 8 corresponding to those
elements will be degraded. Considering ap-
proximate 15% minor degradation of stiff-
ness in those nodes, the coefficents of
stiffnesses regarding to those nodes are
k7 22=98.588;k  23=
-44.910:k " 22=02.318;k " 71 =72.055;k " 4

-32.44; k" 52=65.815. Also there is no

stiffness change in other coefficents of

therefore as follows:

stiffness. More, the coefficents regarding
to Rayleigh damping(see Eq. (15))are: B.,=
1.31x107" and B.=5.47xX107%  For both
before and after the damage, the calculated
modal parameters are hereby takem as the
measured ones. Moreover, all the calcula-
tions in this example are done by way of
double precision

In this example, the two-stage estimate
method (two~stage least-square estimate pro-
couure)is used and the d~ivlh modes{unmea~
sured modes) are estimated respectively by
using the I~4th measured modes. The estima-
ted Sth mode shape is hereby shown in Fig.2
in which the estimated mode shape is closer
to the real one comparing with the initial(
before damage) mode shape.On the other hand,
the estimated 5th natural frequency by using
Eq. (23) is 3.642 Hz( exact: 3.500 Hz) which
closes to the undamaged one(3.653 Hz). Also
the calculated result shows that the unda-
maged natural frequencies can be taken as
the extended ones in the two-stage estimate
method. Furthermore, the calculated result
shows that such conclusion 1is unavailable
to mode shapes. All of these indicate once
again the importance of mode shape in the
identification procedure. The locations of
damage are detected from Fig.3d in which the
nodes 2, 3, 7 and 8 are remarkable. Fig.4

is the result of the detection of one-stage
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Fig.4 One-stage estimate method on damage

location detection for Rayleigh damping
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Fig.5 Two-stage estimate method on damage

location detection for Rayleigh damping.

o: 1--2th MODE SHAPES
a2 {--2th NATURAL FREQUENCIES

® @: 1--2th DAMPING RATIOS

5‘00 r W T T “r‘j
S0l

S 80 r 1
o0

wl

=z 60 f -
2 ; b
5 J -

S 40 PR
= , -

£ 20 Fé e {
w L

a — . e

® 20 40 50  BOD 100
MEASUREMENT ERROR OF

MODAL PARAMETERS (X)
Fig.6 The effect of measurement errors of
natural frequency, mode shape and damping

ratio on identification accuracy



estimate method by using the 1~10th measured modes. In Fig.4, even though 8 modes
are used, it seems there are stiffness changes in almost all the nodes. On the contrary,
the result of the two-stage estimate method shows an excellent sensitivity in Fig.S5.
As the location of damage has been detected, the unknown coefficents @« is therefore
assumed on the nonzero stiffness coefficents associated with those detected nodes in
global stiffness matrix(see Section 3). In the case of this example, the [K(a)] can be
identified(see Eq. (26), N=10, NF=6, NF<2N) by using only the 1~2th measured modes

Paying attention to the identified diagonal stiffness coefficients, a percentage of
identification error E,, is defined as

By = | {(kss)exacr = (Kpp) toznrirrmnl /(Kpp)exace [ X100 ... (28)
The identified result and error E;; are shown in Table 2, in which the identified result is
well satisfied. Substituting the identified [K] and [C], together with [M] into Eq. (10),
the identified natural frequency and mode shape are then obtained. In this example, the
error evaluation J (see Eq. (27)) is equal to 0.003.

The measurement error always exists in practical applications. In this paper, similar to
the error of vibration testing data'®’, the measurement error of a certain mode shape
is defined: If a percentage of vibrational amplitude is increased/or decreased in one
node, the same percentage is decreased/or increased in the neighbour nodes. Also, the
error of natural frequencies(damping ratios) means that all the measured natural fre-
quencies(damping ratios) are simultanously reduced(added) a percentage of respective
frequency(damping ratio) itself. Furthermore, in order to examine the effect of measurement
error on identification accuracy, a mean error of identification is defined as follows

Ba = (T E,n) ZND (29)
where the ND is the number of diagonal unknown stiffness coefficients among the NF(total
number of unknown stiffness coefficents). From Fig.6, an effect of measurement error of
damping ratio on identification accuracy is much smaller comparing with the natural
frequency and mode shape. On the other hand, the measurement error of mode shape has a
strong effect on the identification accuracy. Moreover, the calculated result shows that
the detected location of damage remains unchanged even a 20% measurement error. This

conclusion is similar to our previous study®
6. CONCLUSIONS

In this study, we first derived the basic formulations for structures with Rayleigh damping
based on our previous method® for undamped structures. For small deterioration, a two-stage
least-square estimate procedure was introduced to detect the location of damage. In the nume-
rical example, we examined the effect of measurement error of modal parameters (natural fre-
quency, damping ratio and mode shape) on identification accuracy for damped structures.

The main conclusions in this study are summed up as follows:

(1) A spatial domain, modal analysis method is presented to identify both the location and
severity of damage for damped structures.

(2) The proposed two-stage least-square estimate procedure is effective to detect the loca-
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tion of damage for damped structures, particularlly for a structure with minor damage
(3) The measurement error of mode shape has a strong effect on identification accuracy. On
the other hand, damping ratio has a comparatively weak one.
(4) As for the effect of measurement error on damage location detection, similar to the un-
damped case, within a certain range of measurement error, the detected location of damage
remains unchanged.

2 to obtain the

Because of the complexities of real structures, sometimes it is difficult
precise vibrational modes of structures. Also, as the dynamic behaviors of structures include
not only normal mode shape( Rayleigh damping or proportional damping'*’) but also complex
nmode shape®’, an increasing attention is recently paid to nonproportional damping®®’ by
engineers. Therefore, it is expected to apply this method for real structures with nonpro-

portional damping in future study
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