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FUNDAMENTAL STUDY ON IDENTIFICATION OF SOIL-STRUCIURE
INTERACTION SYSTEMS IN FREQUENCY DOMAIN

Qinjin ZHAO*, Tsutomu SAWADA®*, Kiyoshi HIRAO*** and Yoshifumi NARIYUKI****

ABSTRUCT

A frequency-domain approach of identification of soil-structure systems under earthquake
excitations is presented. A single-story shear building resting on a half-space soil
layer is used as an objective model in this primary study and the frequency dependent
behavior of the soil layer is considered. The parameters of the upper structure and soil
layer are identified independently by a parametric and nonparametric method, respectively
In nonparametric method, the elements of the impedance matrix of soil are approximated
by power polynomials and then the constants of them are identified through least-squares
approach. Two simulated numerical examples are presented to illustrate the effectiveness
of this approach in dealing with soil-structure interaction models possessing frequency
dependent or independent parameters

1. INTRODUCTION

The effect of soil-structure interaction is recognized to be important for the design of earth-
quake-resistant structures and can not, in general, be neglected, The identification of such a
kind of systems through the use of experimental data or response records will give substantial
improvement in constituting the analytical model. Therefore, an effective and efficient identi-
fication approach will undoubtedly be needed. Until now few published papers concern with this
problem.

An important fact has been realized that the soil-structure interaction impedance matrix is
frequency dependent. Veletsos and Wei[l1] and Luco and Westmann[2] suggested the theoretical
expressions of the frequency dependent impedance matrix for a circular footing supported on
the surface of a half-space soil layer. Wolf[3] summarized varieties of the impedance matrices
for the surface structures and embedded structures and showed graphically the variation of
them with the dimensionless frequency. Now a simplified sway-rocking model, which consists of
two couples of frequency dependent (or independent) springs and dampers in the translational
and the rotational, respectively, has been often used. Obviously, the frequency dependent charac-
teristics of soil-structures interaction problems should be devoted more attention in the iden-
tification procedure

Recognition of the effectiveness of the identification of structures in structural dynamics
leads to many methods developed, which can be categorized into the time-domain and the
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frequency-domain. As the time-domain method 1is efficient in dealing with nonlinear structures
or time-variant structures, the use of it has attracted the attention of researchers and has
been increasing since the 1970s. This method can be further classified into two groups:
parametric identification and nonparametric identification. The former seeks to determine the
value of parameters in an assumed model of the structure to be identified, while the latter
produces the best functional representation of the structure. Since the model structure in many
practical problems is by no means clear, an increasing amount of attention has recently been
devoted to nonparametric identification methods. Some literatures with regard to earthquake
engineering problems are mentioned below

Udwadia and Marmarelis[4] were perhaps the first to apply nonparametric identification tech-
niques, in which the Volterra-series, or Wiener-kernel, approach was employed to analyse the
nonlinear properties of structures. Masri and Caughey developed a nonparametric identification
method by approximating the restoring force in a series of orthogonal Chebyshev polynomials
[5,6]. An analogous method by expanding the nonlinear restoring force function in a power
polynomial was presented by Toussi,S. and Yao,J.T.P.[7] and Iwan, W.D. and Peng, C.Y.[8]. The
main features of nonparametric identification procedure generally are: (1) a priori assumption
about the system model is almost not needed or not strictly required, (2)it is applicable to
linear, nonlinear and hysteretic systems with relatively minimal requirements of computation
time and storage and (3)the intial guesses of the parameters to be identified are generally
not needed.

The frequency domain methods have been widely used for some time and have proved to be effi-
cient methods in many cases, of which Udwadia et al.[9] and McVerry s research[10] are probably
more worth to be mentioned. Recently, Sawada, et al.[11] developed a substructure approach in
frequency domain to deal with the structural model with many degree-of-freedom. These methods
may belong to the parametric category 1if classified analogous to the time domain since they
seek to determine the parametric values of the structural models. For identification of a soil-
structure interaction system taking its frequency dependent characteristies into account, the
frequency-domain method is perhaps the only effective means and the nonparametric methods used
in time—-domain are very useful for reference. Similarly the best functional representation of
the structural charateristics rather than the values of the modal parameters can be produced in
frequency domain from the recorded response records. Therefore the development of the non-
parametric identification method in frequency domain was stimulated.

The objective of this paper is to develope an approach for identification of soil-structure
interactin systems, which are frequency dependent, under earthquake excitations. A single-story
shear building resting on a half-space soil layer is selected as an illustrative model. The
stiffness and damping coefficients in the impedance matrix of the soil layer are approximated
by power polynomials and the constants of them are then identified through least-squares
approach. In order to reduce the number of the constants or parameters to be estimated, the
whole specified frequency range 1is divided into several intervals and the identification
procedure is repeated in each interval. Two simulated numerical examples are presented to
illustrate the effectiveness of this approach in dealing with frequency dependent or indepen-
dent soil-structure interaction models.

2. EQUATIONS OF MOTION OF A SOIL-STRUCTURE SYSTEM
Dynamic analysis methods of a soil-structure system had been well developed[3].Without loss of
generality, a single-story shear structure-foundation system (Fig.1) is used to illustrate the

method. The system is supported on a deep layer of assumed elastic soil and subjected to a
horizontal free-field seismic wave that is modified at the structure base due to the presence
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Fig.1 Soil-structure interaction model
of the top structure.
The equations of motion for the system is formulated through substructuring, i.e., the structure-

foundation (Fig.1 a)) and the soil layer(Fig.1l b)). The equations of motion in frequency domain
for the structure-foundation substructure(Fig. la) are:

(-mw*+iCo+)Y(iw)=({wt+k) [Yo(iw)+h® (iw)] (1a)
—wmY(w)HmeYs(iw)]=F.(iw) (1b)
—w lmhY{w)+(I+]1) O (iw)]=M. (iw) (1¢)

in which m=top mass of the structure; C=viscous damping of the structure; K=flexural stiffness
of the structure;I=the moment of inertia of m for rocking; m.=mass of the rigid base; I.=the
moment of inertia of mw, for rocking; h=the story height; Y(iw)= Fourier transform of y(t) (the
absolute displacement of the top mass); Yo (iw)=Fourier transform of y.(t)(the absolute dis-
placement of the base);® (iw)= Fourier transform of ¢ (t)( the rotation of the base); Mo(iw)=
Fourier transform of mo(t) (interaction rocking moment at the interface); Fo(iw )=Fourier trans-
form of fo(t)(interaction translation force at the interface). @ is the circular frequency.

The effect of soil on the structure-foundation can be expressed in terms of impedance matrix of
soil that has been derived by many researchers as mentioned before[l, 2,3]. Veletsos and Wei's
expression[1] may be much more representative and is in the form (see Fig.1 b)):

Fy (iw) _[fss(iao) 0 Hybuw)—yf(iw)}

ML (iaw) [ 0 fre(iao) D (iw) (2a)
with

fss(ian>=[Kll(ao)+iaocll(an)]Kl (Zb)

frr(iao):[KZZ(ao)+iaoczz(ao)]Kr (ZC)

where K, and K. are the constants that are defined as K,=8GR./(2-v) and K.=8GR.*/3(1-v), in
which G=the shear modulus of soil, v =Poisson’s ratio of soil and Ro=the dimension of the base;
Y;(iw) is the Fourier transform of free-field displacement y,(t); ao is the dimensionless
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frequency defined as ao=wRoe/(G/0)'? in

which o is the mass density of soil; the
dimensionless stiffness coefficients
Ki1(ao) and K:2(ao) and the dimensionless
damping coefficients Cii(ao) and Cz2{as)
are frequency dependant and the variation
of them with the dimensionless frequency
ap are shown in Fig.2. For a system with
specified soil parameters (G, v, p) and
base dimension (Re),f.s(ia.) and f..(ia.)
can be written as fss(iw) and f,,(iw)

1.2 T T T T T T

o
o)

values of K and C
(@)
~

B d h diti ff ° 2 4 6 | 8 10
ased on the condition of force continuity di :
imensionless frequenc = 12
in the interface, Egs. (1b) and{lc) can be q Y ac=wRe/(G/p)
combined with Egs. (2) as follows: Fig. 2 Frequency dependent dimensionless

K and C for »v=1/3 [1]

o’mY(iw)tmYe(lw)]=fss (iw) [Yoliw)-Y:(iw)] (3a)
w mhY({w)+{(I+1) D ({w)]l=f. ()0 ({w) (3b)

Eqs. (1a), (3a) and (3b) can be used to perform dynamic analysis or generate the response records
for identification purpose.

3. IDENTIFICATION PROCEDURE

The parameters to be identified for this soil-structure interaction system can be separated
into structural parameters ( stiffness coefficient K and damping coefficient C ) and the para-
meters of the soil layer ( the dimensionless stiffness coefficients, Ki:(w) and Kz2(w), and
damping coefficients, C11(w) and Cz.{w)) that are frequency dependent. From Egs. (la), (3a) and
(3b), it is seen that they can be identified independently if the responses of the top mass and
the foundation are recorded. The absolute displacement of the base y, and the rotation ¢ are
used as the inputs for the top structure-foundation subsystem and meanwhile as the outputs for
the soil layer. The output for the top structure-foundation is the response of the top mass y
and the input for the soil is the prescribed free-field seismic motion y:.

(1) For the Top Structure-foundation: Parametric [dentification

For the top structure-foundation system, the identification of parameters is quite simple as
their characteristics of frequency independent. In most practical situation, the Fourier trans-
form integrals must be calculated by their discrete version, such as FFT, at the discrete

frequency o ;. From Eq. (1a),it can be obtained that:

iw Ctk=wmY(iw )/[Yiw )-Ys(iw;)-h® (iw,)]
=G(iw ;)=RelGiow ;) ]+ilnlGiw ;)] (j=1~N) (1)

where N indicates the number of the sampling points. In every sampling point, there exists a
deviation between the both side of Eq. {4):

e (C,K)={Kk-Re[Gliw )N +i{w ;C-Im[G{iw )]} =e; (K) +ie; (C) (3=1~N) (5)

Using least-square method to mininize the deviations of e;(K) and e;(C) seperately over all
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the sampling points results in the estimated stiffness coefficient k and damping coefficient

C
~ 1 N ~ N N °
:RZlRe [G(iw;)] (6a); c=ZIm[G m»]m/&n (6b)
j= = i=

(2) For the Soil Layer: Nomparametric [dentification

From Fig. 2, it can be seen that the coefficients Xii(w),Ks2(w),Ci1(w) and Cz2(w) are single-
valued function of frequency. These observations suggest that the coefficients can be approxi-
mated with polynomials of the following form:

Kio () =f: a0 (Ta) : Cun (@) =3 buo™ (Tb)

Koo ( Ejdkw (T¢); Coz (@) =3 euw™™ (18

in which p,q,r and s indicate the degrees of the polynomials. Once the constants ax (k=1~p),
bx (k=1~q), dx (k=1~71) and ex (k=1~s) are identified through least-squares approach, the best
functional representation of the soil properties that are frequency dependent can be obtained.
Certainly, Egs.(7) is applicable to the frequency independent case just by setting p,q,r and s
to be one. Dividing the whole frequency range into several intervals and approximating the
coefficients within each interval lead to the degrees of the polynomials reduced greatly so
that the number of constants to be identified reduced

Substituting Egs. (7Ta) and (7b) into Eq.(3a) and Keeping in mind that the Fourier transform
integrals are calculated practically at the discrete frequency w,(j=1~N;, where N, is the
number of samples within each interval), the following expression is obtained

q
élakw}f_l'*'iwj:@j]bkw?_]=w?[mY(iwj)+mbe(iwj)]/[Yb(iwj)—Yf (iw;) 1Kks

=F) (iw;)=Re [F1 (iw;) ]+iIm[F (iews;)] ; (j=I1~Nj3)

(8a)
Analogously, substituting Eqs. (Tc¢) and (7d) into Eq. (3b) yields:
;}gkw‘}"%im;?kw‘}” =0T ImhY (iw) + (I1+1,) @ (i) /0 (ie) k,
=Fz(iw;j)=Re[Fz(iw;) ]+iIm[F2(iw;)] ; (j=1~Nj)
(8b)
For the sake of simplicity,Egs. (8) can be expressed as vector-matrix form:
H.a.+1iHoa,=V.+1V, (9a) : Hia,+iH.a-=V,+1iV, (9b)
whrer
M wyew?™! ] [0, @7 = 0f ]
1 -1 2
H.=|  220%% (10a); H,=2 %27 %2 (10b)
L1 wn; wrﬂjﬂj LN w!%j" wrij_
1 cywi™! (@, ©f « @f ]
vergg =1 2 . s
Ho=|| 22708 (10c);  H,=|02 @™ ©2 (100)
L1 wngroi; ! Lo wRp ONg

— 775 —



a.=lapag=a)’ (10e); a,= (bpbybg) T (101)
a,=(d, dy~d )T (10g); a =(e e, e )T (10h)

V.= (Rel[F, (iw,) ], Re [F| (iwy)].*,Re [F; (iwy;) 1) (101)
Vo= (Im[F; (iwy) 1. In[F, {iws) ],, Im[F; (iowy;) 1) (103)
V.= (Re[Fy(iw;)]1,Re[Fs(iwy) 1, , Re[FguwNj)])T (10%)
Ve=(ImlFs(iw) ], In{Fo(iwg) ], -, Im[Fg(iowy;)1)T (10 ¢)

Taking a sufficient number of the samples within each frequency interval results in a situation
where the number of the sum of p and q or r and s is less than the number of samples. In other
words, the sum, Mj=p+q or Mj=r+s, is less than the number of the sampling point, Nj, within each
interval. Because there are more equations than the number of unknowns, no solution can satisfy
all of the simultaneous equations and, consequently, it would be inappropriate to consider Egs.
(9) as equal. Therefore, Nj x 1 error vector, € 's, are introduced:

e (a.a,) =H.a.-V.+i (Hia.—V,) =e.+ie, (11a)
e (a:a.) =Hja;,~V:+i (H.a.—V.) =estie, (11b)

That results in a classical least-squares problem. If using the weighted least-squares approach,
the constants vectors, @ s, are estimated by minimizing the following quantities:

E.=elQ.e. (12a); E.=elQue, (12b)
E.=elQue. (12¢): E.=eiQ.e. (12d)
in which Q "s= a symmetrical,N; x N;, nonsingular and often diagonal or unit matrix. Setting

the derivative of E s in Egs. (12) with respect to vector & s equal to zero results in
estimates of vector @ 's as follows (the detail procedure can be refered to Referencel[12]):

a.= (HT Q.H.) "'HI Q.V. (13a); a .= (Hl Q.H.) "'HI QsV, (13b)
a .= (HT Q.H,) "'HT Q.V, (13¢); a.= (H! Q.H.) 'H! Q.V. (13d)

The same procedure just discribed is repeated for all of the interested frequency intervals
and then the best functional representations of the elements in the frequency dependent impe-
dance matrix can be produced.

4. NUMERICAL EXAMPLES

A program based on the method just discribed is developed and loaded in personal computers of
NEC 9801 series.Two numerical examples are used to investigate the efficiency and the accuracy
of the proposed method. It is assumed that the acceleration responses of the structure(i.e.
acceleration responses of the top mass and the base)as well as the free-field acceleration are
observable. The Fourier transforms used in this method can be calculated through FFT. The
dimensionless soil stiffness and damping coefficients are at first assumed to be constant in
the example one, and then to be frequncy dependent in the example two

The first 8 sec of acceleration history of the El Centro earthquake (Imperial valley, 1940, shown
in Fig.3a)), which includes the components of wider frequencies (Fig.8b)), is used as the free-
field seismic acceleration. It is sampled at a constant interval At=0.02sec and added with
trailing zeros resulting in 512 samples. The measured responses are generated from Egs. (la), (3a)
and (3b) on the basis of the assumed known parameter values and the aseismic input. The model
of a single-story shear structure-foundation system (as shown in Fig. 1) possesses parameters
of :the top floor mass m=4.5x10%kg; the moment of inertia of m for rocking 1=5.0x10*kg- m?; the
mass of rigid base my,=1.6x10%kg; the moment of inertia of ms, for rocking l.=1.2x10*kg-m?; the
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Table 1. The results for the case of constant soil coefficients

all sampls used half samples used
parameters true

value |estimated |error |R.M.S. estimated | error | R.M.S
value (%) error value % error
K 1. 80E4 1. 80E4 0.00 | 1.3E-4 1. 80E4 0.00 2. 3E-4
C 2. 10E1 2. 10E1 0.00 |3.2E-5 2. 10E1 0.00 5. 4E-5
Ky 1.0230 1.0188 0.39 |5.5E-1 1.0228 0.00 2.8E-4
Cia 0.2846 0.2846 0.00 |1.1E-4 0.2846 0.00 1. 584
Kz 1.0500 1. 0445 0.51 | 4.5E-1 1.0500 0.00 2. 2E-1
Cz2 0.2000 0.2000 0.00 | 3.6E-2 0.2000 0.00 5.0E-2

story height h=3.5m. The structural stiffness and damping coefficients: K=1.8x10*kN/m and C=
21.0 kN - s/m.

Exanple-1

The true values of the constant dimensionless stiffness and damping coefficients of soil are:
K:1:=1.023 and C,:=0. 2846 for the traslational; K2.=1.050 and C..=0.2000 for the rotational. The
generated responses and their Fourier amplitude spectra are shown in Fig. 4,5 and 6. The identi-
fied values, their percentage error with respect to the true values and the root-mean—square
error{R. M. S. error) of the diviationds (in Egs. (5) and (11))are presented in Table 1.

At first, the sample points of responses from zero frquency to the folding frequency (Nyquist
frequency) are all used in the identification. The corresponding percentage errors are almost
zero except for K,: and K... These errors arise perhaps due to the smaller Fourier amplitudes
of the eartquake excitation and the effect of aliasing or overlapping in the higher frequency
range, which exists unavoidably in the discrete frequency-domain dynamic analysis. Then the
sample points from zero frequency to the half of the folding frequency are used and all of the
percentage errors achieve zeros.

Example-2

The numerical data of dimensionless stiffness and damping coefficients of soil layer given in
Fig. 2 are calculated out for: the Poisson’ ratio v =1/3, the shear modulus of the material of
soil G=172 kN/m?, the mass density po=1.5T/m?®, and the dimension of the ba§e Ro=2. Tm. Four
polynomials with same degree of order, p=q=r=s=3, for Ki.(w), XKez{w), Ci1{w) and C:.(w)
respectively, are used to approximated these data over a range of frequency from 0 to 20Hz
which is divided into four intervals: 0~5Hz, 5~10Hz, 10~15Hz and 15~20Hz, and the correspon-
ding constants of the polynomials are presented in the second column of Table 2. These
constants are assumed to be the true values, from which the responses are generated and then
identification is carried out to get the estimations of them. The percentage errors of the
estimated constants with respect to the assumed true values are shown 1in the third column of
Table 2.

It can be found that the percentage errors are all less than 2% and the trend of their
increase is from lower frequency range to the higher.This fact may be explained by the smaller
Fourier amplitudes of the earthquake excitation and the effect of aliasing or overlapping in
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Table 2. The constants of the approximating polynomial

true values percentage error of
estimatmations (%)
polynomial frequency intervals(liz) frequency intervals(Hz)
constants 5~10 | 10~15 15~20 | 0~5[5~10[10~15 |15~20
a1 . 1023E1 .8834E0 [-. 2580E0 . 2808E1 .00 .02 .36 1.26
az —-.4030E~1] . 3420E-1| . 1729E0 -. 2327E0 .01 11 .06 1. 67
as . 4T00E-2{-. 4100BE-2|-. 6500E~2| . 6900E-2 .01 .07 .10 1.67
b1 . 2846E0 .3762E0 . 2528E0 . 1738E1 .00 .03 .22 .99
b .9000E~-2|-. 1760E-1| . 1180E-1{ -. 1628E0 .09 .13 .81 1.22
bs ~. 4000E-3| . 1200E-2{-. 5000E-3] . 4600E-2 .27 | .18 .63 1.25
d, . 1050E1 . 1006E1 . 173581 -. 2641E1 00 ) .07 1. 832 .69
dz ~.1230E0 |-.1227E0 |-.2126E0 . 3353E0 .03 .15 1.75 .16
ds .5100E-2| .6700E-2| .8400E-2|-.8700E-2 .21 .15 1.73 .13
€1 -. 196E-1 . 1990E-1| . 1602E¢0 . 1514E0 .01 .12 .18 .80
[P .5100E-1| .3210E-1| .1400E-2| .6800E-2 .00 .00 1. 60 1. 80
es -. 3800E-2|~. 1600E-2| . 1000E-3|-. 2000E-3 .00 | .03 1.64 1.42
1.2 T T T 1.2 T T
L e estimated
- true
T 0.8+ . Ef {
ks K 1 g L ]
@ 3
3 =
T 0.4f . $ 04r )
----- estimated i T
i —— true ) 1
! L i ! 1 L 1
0 10 20 0 10 20
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1.2 . . . 1.2 — ‘
————— estimated | B ----- estimated |
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& —— true |
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S B B
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= =]
< 04t < 0.4L E
] 1 1 ! n
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Fig. T Comparisons of estimated functions of Ki:1, Ci.1,

the higher frequency range as same as in the Example one.
estimated functions of K11(w),Kz2(w),Ci:(w) and Cz2(w) with the assumed true ones
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5. CONCLUDING REMARKS

A frequency-domain method for identification of soil-structure interaction systems is proposed
The method offers several features:

1)1t is applicable to the soil-structure interaction systems with frequency independent or
dependent parameters.

2)The initial guesses for the parameters to be identified are not necessary

3)Both computation and storage requirements are relatively minimal.

4)The numerical examples show that identification achieves higher accuracy(for the frequency
independent model, errors are 0%; for the frequency dependent model, errors are less then 2%).

5)This method can be directly extended to MDOF upper structure systems as the idependent
indetification for the upper structure and soil.

Additioanal research is needed to assess followig problems:

(1)The influences of measurement noise, which is unavoidable in practical situations.

(2)The singularity of the inverse of matrix H'QH (in Egs. (13)) that is expected to arise
as the degree of the polynomials becomes larger in some cases.

(8)The effect of aliasing or overlapping existing in the frequency-domain dynamic analysis
using discrete Fourier transforms, which may introduce unacceptable errors in the higher fre-
quency range.

(4)The coupling terms for swaying and rocking in the impedance matrix that can not be neg-
lected in some cases.
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