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NONLINEAR STRUCTURAL INSTABILITY OF LONG-SPAN
CABLE-STAYED BRIDGES UNDER GRAVITY AND WIND LOADS

EXES

By Virote BOONYAPINYO®, Hitoshi YAMADA™*, and Toshio MIYATA

Nonlinear structural instability analyses of a long-span cable-stayed bridge under both gravity
loads and displacement-dependent wind loads are presented by finite element approach. The
bridge with the center span length of 1000 meters is considered both during erection and on
completion. A proposed modeling of structural instability includes the three-component
displacement-dependent wind loads as well as all sources of the geometric nonlinearity, such as
the beam-column, nonlinear cable, and bridge geometric change. The results show that the
long-span cable-stayed bridge is highly geometric nonlinear structure under both gravity and
wind loads. This geometric nonlinear and the displacement-dependent wind loads result in
significant reduction in the critical wind velocity as well as the instability gravity load. The
results also indicate that the partly erected bridge is much more susceptible to the nonlinear
lateral-torsional buckling than the completed bridge. Various structural parameters affecting
instability load are also investigated.

Key Words: Structural instability, geometric nonlinearity, cable-stayed bridges, gravity and
wind loads

1. INTRODUCTION

With the increase in span length of modern cable-stayed bridges, structural stability of the whole
bridge under gravity and wind loads presents increasingly important problems both in design and
construction. These problems result from the high compressive forces in the towers and deck as well as the
large wind-induced forces on the flexible bridge. These problems are of particular importance for long-
span cable-stayed bridges using balanced cantilever erection method where the partly erected bridge has
much less stiffness than the completed bridge. Under the wind effects, the long-span bridge is subjecte to
large, displacement-dependent wind loads of three components, i.c., a drag force, a lift force and a pitching
moment. These three-component displacement-dependent wind loads become rapidly large as wind
velocity and angle of attack increase, and then may cause lateral-torsion buckling or torsional divergence.
In addition, structural instability of long-span cable-stayed bridges is generally preceded by nonlinear load-
displacement path because of geometric nonlinearity. This geometric nonlinearity is due to: (1) combined
effects of large bending moments and high axial forces in the towers and deck, (2) nonlinear behavior of
cable, and (3) bridge geometry change due to large displacements. The nonlinear static behavior of cable-
stayed bridges under their own dead loads has been investigated in reference 1, among others.

Previous research on the structural stability of long-span cable-stayed bridges has generally been
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based on the linearized buckling analysis under gravity loads #7). The wind-induced structural instability
of this type of bridge has also generally been based on the linear method and the separation of three-
component wind loads, i.e., the linearized lateral-torsional buckling analysis under the effect of initial drag
force, and the torsional divergence analysis under the effect of pitching moment 89) Very few researches,
if any, have considered the nonlinear structural instability of this type of bridge under gravity loads and
three-component displacement-dependent wind [oads.

In this paper, nonlinear structural instability analyses of long-span cable-stayed bridges under both
gravity loads and three-component displacement-dependent wind loads are presented by finite element
approach. A three-span-continuous cable-stayed bridge with a center span length of 1000 meters and two
side spans of 450 meters, in which represents the future trend in design and construction, is considered
both during erection and on the completion. The nonlinear structural instability characteristics of this bridge
are extensively investigated.

2. METHOD OF NONLINEAR STRUCTURAL INSTABILITY ANALYSIS
2.1 Nonlinear Stiffness Formulation of Bridge Components

A cable-stayed bridge is idealized as an assembly of a finite number of cable and beam-column
elements. The nonlinear stiffness formulations of bridge components are summarized in the following
subheading. More detail of these formulations can be found in references 1, and 10-12.

(a) Nonlinear stiffness formulation of towers and decks

Tower and deck elements in a cable-stayed bridge are idealized by a three-dimensional beam-column
element. The tangent stiffness matrix of the beam-column element consists of the sum of the standard 12
degree-of-freedom elastic stiffness matrix of the beam element and the geometric stiffness matrix of the
beam-column element. The geometric stiffness matrix used in this study includes the effects of initial axial
force, bending and torsional moments. Therefore, the nonlinear stiffness matrix and various elastic
instabilities, such as bending, torsional, and lateral-torsional bucklings, can be considered in the nonlinear
instability analysis through this tangent stiffness matrix. The geometric stiffness matrix is given in
references 10 through 14.

(b) Nonlinear stiffness formulation of cables

A cable element in a cable-stayed bridge is idealized by a three-dimensional truss element. The
nonlinear behavior of cables due to the cable sag is considered through the use of the equivalent modulus of
elasticity (or equivalent elastic stiffness) of the cable as an equivalent straight chord element. The tangent
stiffness matrix of the cable element is composed of the sum of the clastic stiffness matrix and the geometric
stiffness matrix of the truss element. The geometric stiffness matrix is included to consider the large nodal
displacements of the stay cable.

2.2 Nonlinear Structural Instability Analysis under Gravity Loads

(a) Incremental equilibrium equation

The structural instability of a long-span cable-stayed bridge is generally preceded by a nonlinear load-
displacement path caused by the geometric nonlinearity. Therefore, nonlinear analysis is performed
preceding instability analysis to account for the nonlinear prebuckling behavior. In this study, the
incremental approach to matrix analysis for nonlinear instability and large displacements is considered. In
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the incremental approach, the loads are increased in a series of increments, and in each step the structure is
assumed to behave linearly. Beam-column effects are included in an approximate manner through the use
of the tangent stiffness matrix, as previously described in subheading 2.1. The nonlinear behavior of
cables caused by cable sag is also included through the use of the equivalent cable modulus of elasticity. In
addition, the bridge geometry change due to large displacements is taken into account for each step by
revising nodal coordinates. Stress computed in a given step are used in the geometric stiffness matrices for
both beam-column and cable elements, and are also used in elastic stiffness matrix for cable elements to

account for cable sag. The linearized incremental equilibrium equation for the it step is written as:

[Kd#s1> 011} + K{u, . 0,,)] AU; = AF, 1

where Ke is the structural stiffness matrix, Kg is the structural geometric stiffness matrix, AUj is the
incremental displacement vector, AF; is the incremental applied load vector. In Eq. (1) the symbols Ke(u;-
1, 0j-1) and Kg(wj-1, Gj-1) mean that the Ke and the Kg are found using both displacements uj-1 and the
stresses 0j-1 from the preceding step.

(b) Automatic load increment strategies

In the incremental approach for nonlinear instability, the proper selection of load increments is
necessary to increase the computational efficiency and convergence rate of the problem. Generally, it is of
significant advantage to employ large load increments initially and smaller load increments as the instability
load is approached. In this study, depending on the response and load level, two different load constraints
are considered for the automatic selection of load increments; namely, a constant increment of external work
15) and an eigenvalue analysis. The basic idea of the constant increment of external work is that the
nonlinear load-displacement response of a system is correlated to the energy absorption/dissipation process.
However, this method may not be effective near the buckling point because at buckling the loads and
displacements are in orthogonal directions. Therefore, the eigenvalue analysis is applied near the instability
point, while the constant increment of external work is applied in the response far from the instability point.

The incremental load for the j’h step is expressed as

AF; = A8 F,, )

where A8 is the load incremental parameter for the j step, Fref is the reference load vector. The Ad;j can
be determined from the strategies based on the constant increment of external work and/or the eigenvalue
analysis as follows.
In the strategies based on the constant increment of external work, the 49; for the j* step can be
computed from external work:
AW,

)4 = oy [ i

where AW, = U}, F,.; is the external work calculated from the first incremental step. It can be seen from

Egs. (2) and (3) that when large displacements occur (corresponding to highly nonlinear response), a small
load increment is automatically applied.
In the strategies based on the eigenvalue analysis, the 49; for the j* step can be computed from:

Ad; = ¢ A “)
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where A4 is the incremental eigenvalue, as will be introduced later in the next subheading, ¢ is a given
constant depending on the distance between the current equilibrium state and instability point.

(¢c) Computation of instability load factor and mode

The computation of nonlinear instability load factor is conducted in a series of increments using the
above automatic load increment strategies. The determination of instability load factor may be found by
analysis of the tangent structure stiffness or by eigenvalue analysis. The first method yields the instability
load factor and corresponding pattern of displacements. On the other hand, the eigenvalue analysis gives
instability mode, in addition to the load factor and displacements.

To calculate the instability mode, the eigenvalue analysis is performed just before the instability. The
eigenvalue analysis is performed at initial state and at some incremental steps to measure the distance
between the current equilibrium state and instability point. The linearized eigenvalue problem for the jh

step is written as:

[{Kdw., o)+ Kyug, 0]} + AA K (1;, Ag)]| AU; = 0 (5)

The computed value AM reduces the effective stiffness of structure to zero with respect to the instability
mode. The predicted instability load is

Foy =F; 1 + A AF, (6)

Eq. (5) assumes that from the j# step onward the elastic and geometric stiffness matrices change
proportionally with additional load increments. This assumption becomes more nearly true as Fj.1
approaches F¢r. By using a sequence of increasing load F, one can approach the correct instability load
arbitrarily closely. Atconvergence, AA = 0 and Fer = Fj-1. The eigenvector U in Eq. (5) describes the
buckling mode. If the buckling mode is related to the prebuckling pattern, the neutral equilibrium
represents the limit point or, if it is not related, the bifurcation point is obtained.

2.3 Nonlinear Structural Instability Analysis under Displacement-Dependent Wind
Loads

(a) Modeling of displacement-dependent wind loads
The three-component displacement-dependent wind loads per unit span acting on the deformed deck
can be written in the bridge axes as 10-12) (Fig. 1)

Fy(o) = 1pv2a,Cla) Fyla)=LpV2BCya)  My(a) = LpV2B2CAq) (7 ac)
where
Cx(a)=|Cpla) - CL(a)AAntanao secay;  Cyla)=|Cra)+ C[)(a)%tanao secop;
Cla)={Cla)sectay,  V,=Vcosa, (8 a-d)

InEqs. (7) and (8), Fx, Fy and Mz are, respectively, the drag force, lift force, and pitching moment in the
bridge axes; Cx, Cyand Cz are the static aecrodynamic coefficients in the bridge axes; Cp, Cr, and Cy are
the static aerodynamic coefficients in the wind axes (Fig. 2); V is the mean wind velocity that includes the
fluctuation of wind speed on time and space as well as the dynamic amplification; 77 is the relative wind
velocity (horizontal component) in bridge axes; 0 is the air density; B is the deck width; 4» is the vertical
projected area of deck; « is the effective wind angles of attack consisting of the torsional displacement of
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InFig. 1, D, L, and M are, respectively, the drag force, lift force, and pitching moment in the wind
axes. If the wind angle of incidence o is zero, the Fx, Fy and Mz are, respectively, equal to D, L and M.
Moreover, if the effects of drag and lift forces are neglected in wind load modeling, one obtains the
conventional modeling of pitching moment for torsional divergence analysis 12).

(b) Modeling of nonlinear lateral-torsional instability

The modeling of nonlinear buckling under the displacement-dependent wind loads is composed of a
two-step process. In the first step process, nonlinear analysis under the initial wind forces of given wind
velocity V is performed in one step, utilizing the tangent stiffness of the deformed bridge under dead-load
state. In the second step process, nonlinear analysis under the additional wind forces induced by increasing
angle of wind attack due to the torsional deformation of the deck is performed. The linearized incremental
equilibrium equation of the whole bridge subjected to the additional wind forces for j iteration is written as

(K, 00) + KG Y (1, 0)] AU,

B () e M) - o (et ol o) Mfot) ©

where Ke and Kg are, respectively, the structural elastic and geometric stiffness matrices based on the
displacements u and stresses o from the preceding iterations; superscripts G and W mean gravity and wind
loads, respectively; AU Ji is the incremental displacement vector; F;j and Fj.; are the displacement-
dependent wind load vectors based on the current and preceding wind angles of attack, respectively.

The above process will converge for any given wind velocity less than the critical wind velocity. The
convergence criteria for the given wind velocity reaches when the Euclidean norm of static aerodynamic
coefficients is less than the prescribed tolerance, i.e.,

N 1
> {Cla)-Cy jl}/z{ck an)’| =&, k=X,Y, Z (10)

where ¢ represents the prescribed tolerance, Ng = a number of nodes subjected to the displacement-
dependent wind loads.
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(¢c) Computation of critical wind velocity

Because the three components of wind loads are a nonlinear function of the angle of wind attack, the
procedure for calculation of the critical wind velocity involves the outermost cycle of iteration, in addition to
inner cycle of iteration for convergence of each given wind velocity described above. A combination of the

eigenvalue analysis with respect to wind forces, i.e., (Ke + K?) ¥ )LK;V’ =0, and the updated wind-

velocity bound algorithm is applied to choose the next trial critical wind velocity. This procedure is given
in references 10 through 12. The final critical wind velocity reaches when the stable and unstable wind
velocities approach to each other.

3. MATHEMATICAL MODELING OF CABLE-STAYED BRIDGES STUDIED

A three-span-continuous steel cable-stayed bridge with a 1000 m center span and two 450 m side
spans was investigated for structural instability under both gravity and wind loads. This bridge was
designed for representing the future trend in design and construction of the long-span cable-stayed bridge
by Hoshino and Miyata¥). The bridge consists of A-shape towers with 250 m height, an aecrodynamic-
shape closed-boxed deck with 3 m depth and 39.8 m width including fairing, and double-plane cables. The
structural instability analyses were performed for the following combined loads: (1) dead load D (26.5
tf/m); (2) prestresses of cables Ps; (3) live load L (12 tf/m); and (4) wind load W. In the analysis, all the
distributed loads are represented by equivalent concentrated joint loads. The static aerodynamic coefficients
of the deck are shown in Fig. 2. The nodal displacement-dependent wind loads of three-components were
considered for the bridge deck only, while only the initial drag forces were considered for the towers and
cables. The fluctuation of wind speed on time and space as well as the dynamic amplification was included

Cable
clements

Rigid arm
¥ Tinks
Beam-column
clements

1000 m 450 m

| -t} -

450 m

I‘ T

!

Fig. 3 Finite-element modeling of the studied bridges: (a) a model 1, a 3-D model of the completed
bridge; (b) a model 2, a 3-D model of the half-span bridge during erection; and (c) a model 3, a plane
model of the completed bridge
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in the analysis in an approximate manner through the use of gust response factor given by the Honshu-
Shikoku Code 17).

The three-dimensional finite-element modelings of the completed bridge and the half-span bridge just
before closing are, respectively, shown in Figs. 3a and 3b; and the plane finite-element modeling is shown
in Fig. 3c.

4. STRUCTURAL INSTABILITY CHARACTERISTICS UNDER GRAVITY LOADS
4.1 Structural Parameters Affecting Buckling Characteristics

The structure parameters affecting elastic buckling characteristics of long-span cable-stayed bridge
under bridge dead weight and prestresses of cables were investigated by linearized buckling analysis. The
plane finite-element bridge model 3 with about 30 percent reduction of the tower stiffness in the
longitudinal bridge direction was used in the analysis to compare the buckling mode shapes easily in the
structural parametric study.

Buckling load factor = 4.70

( Buckling load factor = 0.83
(a)

(b)

Fig. 4 Effect of longitudinal supports of deck on the buckling load factors and modes for the bridges
with four different types of longitudinal supports: (a) without longitudinal restraint; (b) hinge support at
one end; (c) longitudinally elastic supports (axial stiffness = 5000 tf/m) at both towers; and (d) hinge
supports at both ends; (R=Roller, H=Hinge, E=Elastic)

(a) Effect of longitudinal supports of deck

The elastic buckling load factors and mode shapes for the bridges with four different types of
longitudinal support of deck are shown in Fig. 4. The computed buckling load factors are 0.83, 4.70,
4.90, and 9.65 for the bridges with support systems (a), (b), (c) and (d), respectively. It can be seen that
the buckling characteristics of the fong-span cable-stayed bridges under gravity load are highly dependent
on the manner of the longitudinal support of the bridge deck. Small longitudinal restraint results in low
buckling load factor and buckling of ohetower, while large longitudinal restraint yields high buckling load
factor and buckling of the deck. However, the large longitudinal restraint will attract much higher
earthquake and thermal forces. Therefore, it is very important to select the appropriate longitudinal support
of the deck for the long-span cable-stayed bridge to improve both buckling and dynamic characteristics.
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Two types of longitudinal support of the deck may be applied to the long-span cable-stayed bridge. The
first type is hinge support at one end of deck and roller support at the others. The second type is
longitudinally elastic support at both towers.

(b) Effect of cable arrangement

The two common types of cable-stayed bridges, namely, semi-fan type (Fig. 3) and fan type, were
investigated. The computed buckling load factors are 4.70 for the semi-fan type (Fig. 4b) and 5.57 for the
fan type (Fig. 5). The fan type bridge has as much as 16 % more buckling load factor than the semi-fan
type bridge. However, the fan type bridge requires more cable length than the semi-fan type bridge and
anchorage problem was not considered here. It can be seen that an increase in cable inclination increases
the overall elastic stability of the bridge.

In addition, the difference in buckling mode shapes between the two bridge types should be
mentioned. The inflection points in the center span of the semi-fan type are caused by higher stiffness of
upper cables, which are back anchored at the side supports.

Buckling load factor = 5.57

Fig. 5 Buckling characteristics of fan type Fig. 6 Buckling characteristics of bridge with
bridge two auxiliary supports at side spans

(c) Effect of auxiliary supports at side spans

The bridge with two auxiliary supports at side spans was compared with the bridge without auxiliary
supports. The computed buckling load factors are 4.70 for the bridges without auxiliary supports (Fig. 4b)
and 5.05 for the bridges with auxiliary supports (Fig. 6). The bridge with auxiliary supports has 7 % more
buckling load factor than the bridge without auxiliary supports. It can be seen that the auxiliary supports at
side spans increase the overall elastic stability of the bridge.

4.2 Nonlinear Characteristics and Its Instability

The effects of the geometric nonlinearity on the structure characteristics and the buckling load factor
were investigated. The geometric nonlinearity, such as beam-column effect, nonlinear behavior of cable
and large displacement, was considered both individually and in combination. The plane finite-element
bridge model 3, as shown in Fig. 3¢, was used in the analysis. All the analyses were performed for the
following load sequence: First, the dead load and prestresses were applied in one step, and then the series
of live load was applied in increments until instability occurs.

The nonlinear characteristics of the studied bridge described in terms of the load-displacement are,
respectively, shown in Figs. 7a and 7b for the vertical displacement of the mid-p ~ of center span and the
longitudinal displacement of the left tower top. As can be seen in the figures, the beam-column effect and
large displacement lead to softening structure, while the nonlinear behavior of cables results in a hardening
structure. When all sources of geometric nonlinearity are considered, the bridge first exhibits the hardening
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Fig. 7 Nonlinear load-displacement characteristics of bridge model 3 using various sources of
nonlinearity: (a) vertical displacement at mid-point of center span; and (b) longitudinal displacement at left

tower top

Buckling load factor = 5.18

Fig. 8 Buckling mode characteristics of bridge model 3: (a) using linearized buckling analysis; (b)-(d)
using nonlinear instability analysis with various sources of nonlinearity; (b) including beam-column effects
only; (c) including beam-column effects and large displacement; and (d) including beam-column effects,
large displacement and nonlinear cable

structure at the beginning of the incremental load, and then the bridge becomes softening structure as the
applied load approaches the buckling load.

The nonlinear instability is also compared with linear instability in Fig. 7. The computed buckling
load factors with respect to the live load are, respectively, 9.14 and 7.16 for the lincar and nonlinear
instability analyses. The buckling load factor obtained from nonlinear instability analysis is as much as
21.7 % lower than that obtained from linear instability analysis. It should be noted that in the past, the
buckling load factor obtained form linearized instability analysis is assumed to be conservative because the
cables become stiffer under increased loading, as indicated by Tang 2). However, the results from Fig. 7
indicate that this assumption is not always conservative, particularly for the long-span cable-stayed bridge
in which strongly geometric nonlinearity can occur.
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The instability mode obtained form linear instability analysis is shown in Fig. 8a, and the instability
modes obtained from the nonlinear instability analyses using various sources of geometric nonlinearity are
shown in Figs. 8b-8d, in which the buckling modes are described with respect to undeformed bridge
geometry. From these figures, the following observations can be made: (1) the linear instability analysis
results in both overestimating the buckling load factor and incorrect buckling mode when compared with
the results obtained from nonlinear instability analysis; (2) the inflection point of center span in instability
mode is caused by the nonlinear behavior of cables (due mainly to geometric stiffness matrix of cable
elements and due slightly to increase in equivalent elastic stiffness matrix of cable elements caused by
decrease in cable sag).

5. STRUCTURAL INSTABILITY CHARACTERISTICS UNDER WIND LOADS

The three-dimensional finite-element modelings of the completed bridge model 1 shown in Fig. 3a
and half-span bridge model 2 just before closing shown in Figs. 3b, were used to investigate the nonlinear
structural instability. In this section, nonlinear lateral-torsional buckling characteristics are mainly
presented for the partly erected bridges. Nonlinear buckling characteristics of the completed bridges can be
found in references 11 and 12. The following loading assumption is made. The bridge dead load and
prestresses of the cables are first applied and are kept constant throughout the analysis. Then the
displacement-dependent wind loads of three components are simulated and applied on the bridge.
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5) | Nonlinear lateral- | 5 Jf —~ o)
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Fig.9 Torsional behavior at free Fig. 10 Three components of displacement-
cantilevering point of half-span bridge dependent wind loads acting on deck just before
model 2 using various instability analysis instability of half-span bridge model 2 (Ver = 118
types m/s, 91,2 = 11.5 deg)

5.1 Nonlinear Lateral-Torsional Buckling of Partly Erected Bridges

The results of the nonlinear lateral-torsional buckling analysis for the half-span bridge under the
displacement-dependent wind loads of three components is shown in Fig. 9. These results show that the
nonlinear lateral-torsional buckling analysis results in significant reduction of the critical wind velocity by
60 percent compared with the linearized buckling analysis under the effect of initial wind forces, and by 36
percent compared with the nonlinear torsional divergence analysis under the effect of pitching moment
only. The reasons of such a reduction of the critical wind velocity are the considerations of: (a) the increase
of the three-component displacement-dependent wind loads due to the torsional displacements of the deck
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(Fig. 10), and (b) the relaxation of the equivalent elastic stiffness of the cables due to the effects of lift
forces and pitching moments. The critical wind velocity for the lateral-torsional buckling is mainly
controlled by the large torsional displacements of the deck (Fig. 9), which in turn increase the three
components of wind loads. To reduce the three-component displacement-dependent wind loads, the active
aerodynamic control means such as active control surfaces with wings or leading edges may be necessary if
the cable-stayed and suspension bridges have much longer span in the future.

The effects of displacement-dependent wind loads and geometric nonlinearity on a buckling mode are
shown in Fig. 11 for the half-span bridge. In the linearized buckling analysis, the buckling mode is
predominantly a combined vertical bending and torsional mode, together with slightly horizontal mode.
However, in the nonlinear buckling analysis, the buckling mode is predominantly horizontal mode. This
horizontal mode is probably due to: (1) the low horizontal-bending stiffness of the half-span bridge, and (2)
the large lift forces and pitching moments.

—o—— Windward b e Wi
@) o ———— Leeward (®) Lwﬁggzvr%rd

Vertical bending

S

Horizontal bending Horizontal bending
P - A ) o
TS o
Torsion Torsion
Critical wind velocity = 294 m/s Critical wind velocity = 118 m/s

Fig. 11  Effects of displacement-dependent wind loads and geometric nonlinearity on buckling mode and
critical wind velocity for half-span bridge model 2: (a) linearized buckling instability; (b) nonlinear
buckling instability

5.2 Instability Comparisons between Partly Erected and Completed Bridges

The mid-span torsional and vertical displacement behaviors for the completed bridge and the half-
span bridge are shown in Figs. 12a and 12b. The critical wind velocity for the lateral-torsional buckling of
the half-span bridge (118 m/s) is 13 percent lower than that of the completed bridge (135 m/s). In addition,
the torsional and horizontal displacements of the half-span bridge are much larger than those of the
completed bridge. These results clearly show that the half-span bridge is much more susceptible to the
nonlinear lateral-torsional buckling than the completed bridge.

5.3 Parametric Study

(a) Erection method

The results of analysis show that the erection method significantly affects the critical wind velocity.
In double-side free cantilevering from the tower without temporary supports of bridge deck and tower top,
the safety factor against buckling under its own bridge dead load is about to be exhausted. These buckling
modes are characterized by one of the following modes: (a) the buckling of the tower having no
longitudinal restraint of tower top, and (b) the horizontal buckling of the deck due to the torsional buckling
of vertical tower-deck supports. As a result, the critical wind velocity for the lateral-torsional buckling in
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Fig. 12 Comparison of displacement behavior at mid-point of center span between completed bridge
model 1 and half-span bridge model 2: (a) torsional displacement; and (b) horizontal displacement

this erection method is relatively low. However, if the two temporary supports of bridge deck at side span
as well as one longitudinal support of the bridge deck are provided in double-side free cantilevering
method, the critical wind velocities in all processes of erection are much higher than the design one. It can
be seen that for the long-span cable-stayed bridge the intermediate supports at side spans are necessary to
increase the stability, particularly during erection.

Alternatively, in one-sided free cantilevering of center span with one longitudinal support of the
bridge deck, the critical wind velocities for lateral-torsional instability in all processes of erection are much
higher than the design one.

(b) Effect of angle of wind incidence
The angle of wind incidence considerably
affects the critical wind velocity for both the half-span
and completed bridges (Fig. 13). The angle of
incidence of + 5 degree (head up) significantly

Critical wind velocity (m/s)

reduces the critical wind velocity from 118 m/s to 90 a0 & spdn bndge \A
m/s for the half-span bridge and from 135 m/s to 113 0 L .
m/s for the completed bridge. 404
PEEEEN _.

(c) Effect of compressive force 0 bt , ‘ b :" . RRE
contribution to elastic lateral-torsional 7-6-54-32.101234567
buckling Angle of wind incidence (deg)

The contribution of compressive forces in the
deck and towers to the elastic lateral-torsional Fig. 13 Critical wind velocities for
buckling is largely dependent on the bucking load completed bridge model 1 and half-span
factor of vertical bending mode under its own dead bridge model 2 for various angles of
Joads 19). If this buckling load factor is relatively incidence
high (e.g., greater than four times), this compressive
force contribution is mnot significant. This

contribution can be simply demonstrated by using the
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closed form formula of linear and elastic lateral-torsional buckling for a doubly symmetric beam-column
under uniform end moment M and axial force P: M,, =M., /(1-1/A,)(1-1/A,) where Mcr and Mcro are
the elastic critical moments in the presence and absence of initial axial force, respectively; 45 is the bending
buckling load factor for the axis normal to the axis of bending; A is the torsional buckling load factor. For
the practical cable-stayed bridges, A is very high compared with Ap , and then A may be neglected.

6. CONCLUSIONS

Nonlinear structural instability analyses of long-span cable-stayed bridges under gravity loads and
three-component displacement-dependent wind loads are presented by finite element approach. From the
numerical examples of the nonlinear structural instability analysis of the long-span cable-stayed bridge with
the center span length of 1000 meters, the conclusions are summarized as follows.

(1) Under gravity loads, the buckling load factor obtained from nonlinear instability analysis is as
much as 22 % lower than that obtained from linear instability analysis. This is because the long-span cable-
stayed bridge is highly nonlinear structure under gravity loads, where the bridge first exhibits the hardening
structure at the beginning of the incremental load, and then the bridge becomes softening structure as the
applied load approaches the buckling load.

(2) The incorporation of the three-component displacement-dependent wind loads as well as the
geometric nonlinearity in the modeling results in significant reduction in the critical wind velocity,
compared with the linearized lateral-torsional buckling modeling under the initial drag force, and torsional
divergence modeling under the pitching moment.

(3) The partly erected bridge is much more susceptible to the nonlinear lateral-torsional buckling than
the completed bridge. In addition, the erection method significantly affects the critical wind velocity.

Concerning the structural stability under combined gravity and wind loads, the long-span cable-
stayed bridge with the center span length of 1000 m presents no serious problem both during erection and
on the completion. However, it is expected that the structural instability will present a more crucial mode of
failure if a cable-stayed bridge has much longer span in the future.

REFERENCES

1) Nazmy, A. S., and Abdel-Ghaffar, A. M., "Three-Dimensional Nonlinear Static Analysis of Cable-
Stayed Bridges," Computers & Structures, Vol. 34, No.2, pp. 257-271, 1990.

2) Tang, M. C., "Buckling of cable-stayed girder bridges," J. of the Structural Division, ASCE,
102(ST9), pp. 1675-1684, 1976.

3) Gimsing, N. I., Cable supported bridge: concept and design, John Wiley and Sons, New York, 1983.

4) Hoshino, M, and Miyata, T., "Design Trial of a Long-Span Cable-Stayed Bridge with Center Span
Length of 1000 m.," Bridge and Foundation Engineering, Vol. 24(2), pp. 15-22, 1990 (in Japanese).

5) Miyata, T., "Design considerations for wind effects on long-span cable-stayed bridges,” Proc. of the
Seminar on Cable-Stayed Bridges: Recent Developments and their Future, ELSEVIER, Amsterdam,
Netherlands, pp. 235-256, 1991.

6) Ito, M., Endo, T., Suzuki, S., and Takagi, N., "Long-span cable-stayed bridge with longitudinally
elastic supports," Structures Congress ' 91 Compact Papers, ASCE, New York, pp. 506-509, 1991.

7) Endo, T., lijima, T., Okukawa, A., and Ito, I., "The technical challenge of a long cable-stayed
bridge - Tatara Bridge," Proc. of the Seminar on Cable-Stayed Bridges: Recent Developments and
their Future, ELSEVIER, Amsterdam, Netherlands, pp. 417-436, 1991.

— 307 —



8) Virlogeux, M., "Wind Design and Analysis for the Normandy Bridge", Proc. of the First Int. Symp.
on Aerodynamics of Large Bridges, Danish Maritime Inst., Copenhagen, Denmark, 1992.

9) Simiu, E., and Scanlan, R.H., Wind Effects on Structures, 2nd., John Wiley and Sons, New York,
1986.

10) Boonyapinyo, V., Nonlinear Static Instability Analysis of Long-Span Cable-Stayed Bridges under
Gravity and Wind Loads, Doctoral Thesis, Yokohama National University, Yokohama, Japan, 1993.

11) Boonyapinyo, V., Yamada, H., and Miyata, T., "Wind-Induced Nonlinear Lateral-Torsional Buckling
of Cable-Stayed Bridges," J. of Structural Engineering, ASCE; to appear Feb., 1994.

12 Boonyapinyo, V., Yamada, H., and Miyata, T., "Nonlinear Buckling Instability Analysis of Long-
Span Cable-Stayed Bridges under Displacement-Dependent Wind Loads,” J. of Structural
Engineering, ISCE, Vol. 39A, pp. 923-936, March, 1993. ‘

13) Argyris, J. h., Hilpert, O., Malejannakis, G. A., and Scharpf, D. W., "On the Geometric Stiffness of
a Beam on a Space-a Copsistent Approach,” Computer methods in Applied Mechanics and
Engineering, Vol. 20, pp. 105-131, 1979.

14) Yang, Y. B., and McGuire, W., "Stiffness Matrix for Geometric Nonlinear Analysis, and Joint
Rotation and Geometric Nonlinear Analysis," J. of Structural Engineering, ASCE, Vol. 112(4), pp.
853-9053, 1986.

15) Bathe, K. J., and Dvorkin, E. N., "On the Automatic Solution of Nonlinear Finite Element Equation,”
Computers & Structures, Vol. 17, No. 5-6, pp. 871-879, 1983.

16) Japan Highway Public Corporation, Annual Report 1990 Technical Comm. Meikoh Cable-Stayed
Bridge, Japan, 1991.

17) Honshu-Shikoku Bridge Authority, Wind Resistant Design Code for Honshu-Shikoku Bridge,
Tokyo, Japan, 1976.

(Received September 16, 1993)

— 308 —



