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NONLINEAR BUCKLING INSTABILITY ANALYSIS
OF LONG-SPAN CABLE-STAYED BRIDGES UNDER
DISPLACEMENT-DEPENDENT WIND LOAD

Hokok

By Virote BOONYAPINYO®, Hitoshi YAMADA™", and Toshio MIYATA

A finite-element approach tocalculate a critical wind velocity for nonlinear flexural-torsional
buckling instability of long-span cable-stayed brfdges under displacement-dependent wind
load is presented. An analytical modeling of buckling instability under wind load is
formulated considering thethree components of displacement-dependent wind load as well as
geometric nonlinearity. A combination of the eigenvalue analysis and the updated wind-
velocity bound algorithmis applied to automatically calculate the critical wind velocity. The
results show that theincorporation of thethree components of the displacement-dependent wind
load as well as the geometric nonlinearity in the modeling of flexural-torsional buckling
instability result in significant reduction of the critical wind velocity, compared with both the

conventionallinearized torsionaldivergence and linearized flexural-torsional buckling.

1. INTRODUCTION

The safety against buckling instability of a long-span cable-stay bridge under the
displacement-dependent wind load, has recently become of great interest to bridge and
structural engineers because as the bridge span increases, the bridge become more
flexible and accordingly more susceptible to wind-induced problems. Under the effect of
wind forces, the bridge is subjected to, and acts to resist, a drag force, a lift force and a
pitching moment. These three components of wind forces are functions of wind angle of
attack, in addition to wind velocity, and become rapidly larger as wind velocity increases,
and then may result in one of two modes of static instability: torsional divergence and
flexural-torsional buckling. The phenomenon of torsional divergence is characterized by
a torsional instability, a monotonically increasing rotational to failure at a critical wind
velocity at which the overturning pitching moment exceeds the elastic torsional
resistance of the bridge structure. On the other hand, the flexural-torsional buckling is
characterized by a combined vertical bending and torsional instability at a critical wind
velocity at which the three components of the wind forces reduce the stiffness of the

structure to zero.
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In addition, long-span cable-stayed bridges exhibit geometric nonlinearity due to :
(1) combined effects of axial force and bending moment in the bridge deck and towers; (2)
nonlinear behavior of cables caused by cable sag; and (3) bridge geometry change due to
large displacements. All sources of this geometric nonlinearity should be considered in
the nonlinear and instability analyses of this kind of bridge.

Three-dimensional nonlinear static analysis of cable-stayed bridge under bridge
dead load have been studied by Nazmy and Ghaffarl 1), among others. Several
investigators have recently studied the linearized flexural-torsional buckling of frame
structures under displacement-independent load by finite element method 2-5). Hirai et
al. 8) have proposed the approximated formulas to estimate critical wind velocity for the
flexural-torsional buckling of cable-supported bridges; however, the accuracy of this
formula largely depends on the assumed mode of buckling. Previous researches on the
static instability of cable-stayed bridges under wind load have generally been directed
toward the linearized torsional divergence under the effect of pitching moment 7-8 or
linearized flexural-torsional buckling under the effect of drag force. Very few
researches, if any, have considered the nonlinear flexural-torsional buckling under the
combined effects of the three components of displacement-dependent wind load.

In this paper, a finite-element approach to calculate the critical wind velocity for the
nonlinear flexural-torsional buckling instability of long-span cable-stayed bridges under
the three components of displacement-dependent wind load is presented. First, the
nonlinear stiffness formulation of the bridge components is summarized, then the
modeling of nonlinear flexural-torsional buckling instability is formulated. Next, a
combination of the eigenvalue analysis and the updated wind-velocity bound algorithm is
applied to automatically calculate the critical wind velocity. Finally, as a case study, the
present method is applied to investigate buckling instability of a very long-span cable-
stayed bridge with a center span length of 1000 meters. This bridge model was based on
the design feasibility to represent the future trend in long-span cable-stayed bridges by
Hoshino and Miyata 9).

2. NONLINEAR STIFFNESS FORMULATION OF BRIDGE COMPONENTS

2.1 Nonlinear Stiffness Formulation of Tower and Deck Elements

Tower and deck elements of a cable-stayed bridge are idealized by a beam-column
element able toresist bending, shear, torsion, and axial forces. Large deformations that
occur in these members under the combined effects of large bending moments and high
axial forces produce a strong coupling between axial and flexural stiffness in these
members. This coupling can be considered in the refined nonlinear analysis by
introducing the concept of geometric stiffness matrix.

The element incremental equilibrium equation for a beam-column element in an
updated Langrangian formulation is expressed as:
egful+ gl = 1) - 3 °
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in which [ke] = the conventional linear elastic stiffness matrix of the element, [kg*] = the
(inconsistent) geometric stiffness matrix of the element, {u} = the incremental
displacement vector as shown in Fig.1a, {2f} = the element nodal external forces vector as
shown in Fig.1bat the end of the incremental step, and {1f} = the element nodal internal
forces vector as shown in Fig.lb at the beginning of the incremental step. The
derivations of [kg"] is given in detail in reference 10. The elements of [ky*] are given in

Appendix where (.) indicates a zero value and Wagner coefficient
F I

K= (I I +IZ) @ .
In the preceding formulation the T
conventional rotational displacements #Gy N 8y8 #
(gradients of transverse displacements), is eﬁu}é* Uy uyB *leB 0.8 «
adopted. However, these displacement I's @ L @/u
derivatives do not ensure continuity at Y /éZZZA 0,5 »
angle joints when finite rotations of space 7
structures are considered or when an out- (a)
of-plane buckling behavior of planar
frames is concerned. Therefore, the
Rodriguez's angles, which are X
commutative for finite rotations, is used to
represent, joint rotations, and yield, in M . F *MYA MYB iF M
addition to [kg"], the joint correction matrix B Eﬁ*EYA Ty BB x
yd: L Bw
LR N B
0 Mz 'My / MzA 2B
k=3 M, 0 o z N
My 000 @®)

The [kj] is related only to the rotational Fig.l A beam-column element in
degree-of-freedom and has the form for local coordinate: (a) Degree of

three-dimensional beam-column elements: freedom; (b) Nodal forces

[k dlag( {kﬂ 0]k { } l @)
where [0]is the null 3x 3 matrix and [kA] and [kjB] are obtained from Eq. (3) by replacing
(My, Mz) by -(My, M) at nodes A and B, respectively.

Then, the element incremental equilibrium equation for a beam-column element in
Eq. (1) is rewritten as:
[eful+ [kgftub =2} - {3} [kg= k| +[k] ®)

in which [kg] = the (consistent) geometric stiffness matrix for a beam-column element.

#
kg

Therefore, the tangent stiffness matrix in local coordinates for beam-column

elements is given by
kel = [kel + [kg] 6)
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It is interesting to note that due to the incorporation of the various nonlinear strains
in an updated Lagrangian formulation, the geometric stiffness matrix in Eq. (5) can also
be used to investigate instability of three-dimensional frame structures subjected to
various forces, such as an axial force, a bending moment, a shear force, and a torsion.
The validity of the present geometric stiffness matrix for buckling analysis is confirmed

in the numerical testin reference 10.

2.2 Nonlinear Stiffness Formulation of Cable Elements.

An apparent axial stiffness of a stay cable in a cable-stayed bridge is affected by the
cable sag which is greatly influenced by the amount of tension in the cable. A convenient
method to account for this effect in the cable axial stiffness is to replace the cable by a
truss member with an equivalent modulus of elasticity for the cable. This concept was
first introduced by Ernst and has been verified by several additional investigators. This
equivalent cable modulus of elasticity is given by
Bog= ———— 5

1+[MJ)~?—E—] X

12T (D

in which Eeq = equivalent modulus of elasticity, E

= cable material modulus of elasticity, w = weight o

. . . u /
per unit length of cable, L. = horizontal projected xA

VA

length of the cable, A = cross section area of the
cable, T = cable tension. Therefore, the elastic .
. o . Fig.2 Degree of freedom of a cable
stiffness matrix in local coordinates for the cable element in local coordinate

element shown in Fig. 2 is given by:

:'k*_AEG 1'1
S S|

where L¢ = chord length of the cable.

In addition to elastic stiffness matrix, in a long-span cable-bridge bridge, the

8)

geometric stiffness matrix due to large nodal-displacements of the stay cable should be
considered because the concept of equivalent cable modulus of elasticity does not consider
the change of geometry at cable ends. The geometric stiffness matrix of a three
dimensional cable is simply equal to the geometric stiffness matrix of a three

dimensional truss and is given by:

Tl 6l IG 000
=Ll oo ,

in which T is the axial force in the cable and is positive for a tension member.
Therefore, the tangent stiffness matrix in local coordinates for cable elements is

given by
(ke = [kel + [kgl (10)
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3. MODELING OF NONLINEAR BUCKLING INSTABILITY UNDER
DISPLACEMENT-DEPENDENT WIND LOAD

In formulation of static instability under displacement-dependent wind load, the
following loading assumption is made. The gravity loads (dead load, prestresses and
some live load (if any) ) are first applied and are kept constant, then the displacement-
dependent wind load are simulated and applied on the bridge until the instability is
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Fig.3 Motion of a bridge deck and three components of wind forces
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wind forces per unit span acting on the
Fig.4 Staticaerodynamic coefficients as a

deformed deck can be written, with function of angle of attack 11

respect to wind axes, as
Die) = 2pV°A Co)  Liw = 5pV2BC (o) M@ = pVB°Cyfa)
2 2 2 (11 a-¢)

where D, L, and M are mean drag force, lift force, and pitching moment per unit span
shown in Fig.3, respectively; p is the air density; B is the deck width; Aj is the vertical
projected area of deck; Cp, Cr, Cym are, respectively, drag, lift and pitching moment
coefficients with respect to wind axes.

The projection of the wind forces in Eq. (11) on the global (undeformed) bridge axes
shown in Fig.3 are
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FX((X) = D(a)cos(ot 0) - L(a)sin(a 0)9 FY(OL) = D(a)sin(aq) + L(a)cos(ad); M Z(oq) = M(a) (12 a-c)

These wind forces can be written in the alternative forms as

Fx(@) = oV 1A,Cxloh Pyl = oV BCYaf M) = %pV °B°C fa)

(13 a-c)
where _
CX(O() = {CE(CL) - Cda)tanao}secao; CY(OL) =ICL((1) + CD((x)tan(xO}secao;
Cz(a) = [CM(O.)]SEC 2(10; V,=Vcosa, (14 a-d)

In Egs. (13) and (14) V; is relative wind velocity with respect to global bridge axes; Cx(a),

Cy(o) and Cy(a) are the static aerodynamic coefficients with respect to global bridge axes.
The analytical modeling of nonlinear buckling under displacement-dependent wind

load is composed of a two-step process as follows. In the first step process,

analysis under initial wind forces of given wind velocity V with angle of incidence ogis

performed in one step. The equilibrium equations is written as:
[Ke(u , o)+ Kylu ,o)} U-= %pVjAnCX(aOﬁBCY(ad)JrBzCZ(aO)} )

where Keand K are found using both displacements u and stresses o from gravity loads
in the preceding analysis; Vi is given in Eq. (14d); Cx(ap), Cy{ag) and Cgzlag) are,
respectively, obtained from Eqgs. (14 a-c) with o = ag; superscript G means gravity loads.
In the second step process, nonlinear analysis under additional wind forces,
induced by torsional deformation of the deck which in turn increases wind angle of
attack, is performed as follows. After performing the above nonlinear analysis under
initial wind forces, the total displacements and internal forces are cbtained. From these
displacements, the current static aerodynamic coefficients, Cp, C1, Cy are computed
and transformed to Cx, Cy, Cz. The linearized incremental equilibrium equations of the

bridge subjected to additional wind forces for jthstep is written as

K&(uj_l, oj_l) + K§+W(uj_1 ,oj_lﬂ AU;

= %pV i{A nCX(aJ.)JrBCy(a J.)+B2C 2(0‘ j) - %—pV jA nCX(on j-ﬂ)"’BC &{aj.]l)+B2C 7((1 J._lﬂ 16)

where superscript W stands for wind load. The above iterative process continues and at

the end of each iterative cycle the additional wind forces are computed. The above
process will converge for any given wind velocity less than the critical wind velocity.
During iterative cycle, analysis of the tangent structure stiffness matrix make it possible
to determine for each instance whether the equilibrium is stable, unstable or neutral.
The convergence criteria for given wind velocity reach when the Euclidean norm of

static aerodynamic coefficients are less than the prescribed tolerance. The Euclidean

1
N N /2

Eﬁ{Cl‘(ai)_cl‘(aj'l):f/i{ck(aj-l)}z = g k=Xv2z

norm is written as

17
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in which ex represents prescribed tolerance, N,= number of nodes subjected to
displacement-dependent wind load.

It is interesting to note that due to the consideration of the three components of the
displacement-dependent wind load in the analytical modeling, the safety against both the
nonlinear flexural-torsional buckling instability and nonlinear torsional divergence can
be investigated. If the effect of drag force D and lift force L are neglected in Egs. (15) and
(16), one obtains the analytical modeling of nonlinear torsional divergence. If the wind
angle of incidence is zero, the wind axes coincide with global bridge axes, and then the
wind forces Fx, Fy and My are, respectively, equal to D, L,and M.

4. CALCULATION OF CRITICAL WIND VELOCITY

Because the three components of wind loads acting on the bridge deck are nonlinear
displacement-dependent wind load, the procedure for calculation of the critical wind
velocity of cable-stayed bridge involves the outermost cycle of iteration, in addition to
inner cycle of iteration for convergence of each given wind velocity described in the
previous section. A combination of the eigenvalue analysis with respect to wind forces
and the updated wind-velocity bound algorithm is applied to directly calculate the critical
wind velocity instead of the trial-and-error method. The procedure can be summarized
as follows.

Once the convergence of the three components of the displacement-dependent wind
load of given wind velocity is reached (Eq. (17)), the eigenvalue analysis with respect to
wind forces of given wind velocity is performed for predictor of the next wind velocity.
The eigenvalue Troblem is expressed as

WQ+K9+XKS=O (18)

The eigenvalue in Eq. (18) should be modified to consider the derivative of the wind forces.
Then the first approximation to the next chosen wind velocity is computed through

method of equivalent drag force acting on the center span, and is given by

a
: Cila) N
Vi= ——— P Vil hig Via

i av) 1
Cx()»i_la i_;’) (19)

av

where Vi1 = the wind velocity in the preceding outermost cycle of iteration; i1 o
average torsional displacement of center span, obtained by using Simpson' s rule, in the
preceding outermost cycle of iteration; Ma reduced buckling load factor. In Eq. (19)
ch aﬂ

1%+ pean that Cxis computed using the average torsional displacements of deck

time the buckling load factor A in the preceding outermost cycle of iteration.

In addition, Vi in Eq. (19) should be satisfied the updated lower and upper wind-
velocity bounds of the preceding outermost cycle of iteration, Vi, and Vyj, as follow:
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Vu<V;<Vy (20)

When Vi<V Vi computed from Eq.

(19) with “i1=1FO0Thy

VsV, V

When

i is set toequal V.
Finally, since the wind forces
become larger under increase in wind
velocity and the structural stiffness is
likely to decrease under the effect of wind
forces, the final approximation to the
next chosen wind velocity is modified
into
*
ViitV,

2 @1)
where V.1 = the wind velocity in the
preceding outermost cycle of iteration.

When the preceding wind velocity is
unstable, the next chosen wind velocity is
computed from

Vii+Vy

Co2 (22)

It is clear that the processes of Eqs.
(18)-(22) can be repeated for the search of

the true critical wind velocity until the

stable and unstable wind velocities close
to each other. Typically, this procedure
converges in a few outermost cycle of
iteration. Flow chart for nonlinear static
instability analysis under displacement-
dependent wind load is shown in Fig.5.

5. NUMERICAL EXAMPLES

Perform nonlinear analysis
under gravity loads

- |

1
L Compute wind velocity ’
- |

-

Compute additional wind force
(for 1st iteration, =initial wind forces)

Perform nonlinear analysis
under additional wind forces

Check convergence of
ind-force coefficien

A

Unacceptable Compare

updated stable and unstable
wind velocities

Acceptable

Fig.5 Flow chart for nonlinear static
instability analysis under
displacement-dependent wind load

As a case study of the present method for calculation of the critical wind velocity for

nonlinear flexural-torsional buckling instability under the three components of the

displacement-dependent wind load, it is applied to a three-span continuous cable-stayed

bridge with a 1000 meter center span and two 450 meter side spans.

The general

configuration of the bridge is shown in Fig.6. Longitudinal supports are all free except

one hinge support at the left end of bridge deck, and lateral supports at the towers and

deck ends are elastic. For the present purpose, the effects of auxiliary supports at side
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Fig.6 General configurationofthe bridge with a three-span
continuous deck studied (unit: m)

spans are not considered. The total dead load on the deck is equal to 26.5t/m. The design
wind velocity at 10 m height is 45 m/s and corresponding wind velocity at 56 m mean
height of bridge deck is 57.15 m/s. In the following, the critical wind velocity will be
referenced at deck elevation. The static aerodynamic coefficients for the bridge studied
are assumed to coincide with Fig.4 and are incorporated in computer program by using
polynomial function representation. The three components of the nodal displacement-
dependent wind load are considered for the deck while for the towers and cables only
drag forces at initial wind angle of attack are considered. Based on the Honshu Shikoku
Bridge Code 12), gust response in the longitudinal direction of bridge axis is taken into
account in calculation of the drag force but neglecting in calculation of the lift force and
the pitching moment. The convergence criteria for a given wind velocity is reached,
when the Euclidean norm of the static aerodynamic coefficients, ex, ey and &5, are less
than 5 %.

The three-dimensional finite element model for complete bridge used in this

investigation is shown in Fig.7.

5.1 Nonlinear Flexural-Torsional Buckling Instability

The torsional behavior at mid-point of center span for linearized and nonlinear
flexural-torsional buckling instability analysis is shown in Fig.8. As can be seen in the
figure, the nonlinear buckling analysis under the three components of the displacement-
dependent wind load results in significant reduction of the wind velocity, compared with
the linearized buckling analysis under the initial wind forces. The critical wind velocity
of 135 m/s obtained from the nonlinear buckling analysis is 55 % lower than that of 299
m/s obtained from the linearized buckling analysis. The corresponding buckling modes
of linearized and nonlinear buckling analyses are shown in Fig.9. In the linearized

buckling analysis, the phenomenon of asymmetric vertical bending and torsional models
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Fig.9 Bucklingmodes and corresponding critical wind velocities obtained from:
(a) linearized flexural-torsional buckling instability
(b) nonlinear flexural-torsional buckling instability

are probably due to: (1) the higher stiffness of upper cables which are back-anchored at
side supports and (2) the effects of the geometric stiffness matrix of the tension cables 10,
However, in the nonlinear buckling analysis, the relaxation of the elastic stiffness of the
upper cables in the center span probably leads to symmetric vertical bending and
torsional modes. It should be noted that because of unsymmetric supports at the ends of
bridge deck (hinge support at one end and roller support at the other), the buckling
modes deviate slightly form symmetric and/or asymmetric modes.
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The drag forces, lift forces, and pitching moments acting at the bridge deck at the
initial undeformed deck configuration and at the flexural-torsional buckling instability
are shown in Fig.10. It is interesting to note that each component of the displacement-
dependent wind loads at instability is much larger than wind loads at initial undeformed
deck configuration.
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Fig.10 Three components of displacement-dependent Wind
load acting on the deck at nonlinear flexural-torsional

buckling instability ( V¢ = 135m/s, 61,/ = 14.2 degree)

As an evaluation of the computational efficiency, the convergence history of the
critical wind velocity for nonlinear flexural-torsional buckling instability under
displacement-dependent wind load is indicated in Table 1. The iterative procedure is
initialed by using the design wind velocity as the beginning trial critical wind velocity.
The true critical wind velocity is obtained after only seven outermost iteration cycles.
This result shows that the present solution procedure results in good computational

efficiency compared with conventional trial-and-error method.

Table 1. Convergence history of critical wind velocity under displacement-dependent

wind load
Outermost Est.wind Structural Reduced Updated wind- Est. wind
iteration velocity stability buckling velocity bounds vel. in next

cycle (m/s) Check load factor VL VU iteration.

1 57 Stable 27.33 57 299 178

2 178 Unstable - 57 178 118

3 118 Stable 4.99 118 178 148

4 148 Unstable - 118 148 133

5 133 Stable 2.10 133 148 140

6 140 Unstable - 133 140 136

7 136 Unstable - 133 136 135

5.2 Comparisons with Nonlinear Torsional Divergence
The present method for nonlinear flexural-torsional buckling instability analysis

have been compared with conventional method for nonlinear torsional divergence in
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Fig.8 As can be seen in the figure, the nonlinear torsional divergence analysis under
only pitching moment results in greatly overestimating the critical wind velocity,
compared with the nonlinear flexural-torsional buckling instability analysis under the
three components of wind forces. The critical wind velocity of 135 m/s obtained from the
nonlinear flexural-torsional buckling instability analysis is 31 % lower than that of 197
m/s obtained from the nonlinear torsional divergence analysis. This result shows that
the nonlinear flexural-torsional buckling instability of long-span cable-stayed bridge is

much more likely to occur than the torsional divergence.

5.3 Effect of Wind Angle of Incidence

The torsional and horizontal behavior at mid-point of center span obtained from the
nonlinear flexural-torsional buckling instability analysis is shown for various wind
angle ofincidence in Figs.11land 12 As can beseenin the figure, the angle of incidence
has the considerable effects on both the torsional and horizontal displacement behavior of
the deck as well as the critical wind velocity. The angle of incidence of positive 5 degree
(head up) reduces the critical wind velocity from 135 m/s to 113 m/s.
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Fig.11 Torsional behavior at mid-point of Fig.12 Horizontal displacement behavior
center span for various wind at mid-point. of center span for
angles of incidence various wind angles of incidence

6. CONCLUSIONS

The finite-element approach to calculate the critical wind velocity for nonlinear
flexural-torsional buckling instability of long-span cable-stayed bridges under the three
components of displacement-dependent wind load is presented. The conclusions are
summarized as follows:

(1) The incorporation of the three components of displacement-dependent wind
load as well as the geometric nonlinearity in the analysis results in significant reduction
of critical wind velocity, compared with the linearized buckling and torsional divergence
analyses.
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(2) A combination of the eigenvalue analysis and the updated wind-velocity bound
algorithm for calculation of critical wind velocity under the displacement-dependent
wind load results in a fast rate of convergence, compared with the trial-and-error
method.

It is expected that if a cable-stayed bridge has much longer span in the future, the
nonlinear flexural-torsional buckling instability under three components of

displacement-dependent wind load will present a crucial mode of failure.
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