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DETECTION OF STIFFNESS DEGRADATION OF STRUCTURAL ELEMENTS
FROM MEASUREMENT OF NATURAL FREQUENCIES AND MODE SHAPES

Hongying YUAN®*, Kiyoshi HIRAO®*,
Tsutomu SAWADA*** and Yoshifumi NARIYUKI****

This paper presents a method to detect the stiffness degradation
of structural elements for undamped complex structures, by the use.of
modal analysis. In this method, the location of damage is detected by
using the lower measured natural frequencies and pseudoinverse of mode
shapes. In order to estimate the severity of damage, a certain unknown
coefficients are consequently supposed in global stiffness matrix and
solved by the arranged equations from vibration equations of structures.
Moreover, a condensation technique is introduced for dealing with the
case of incompletely measured system. Two numerical simulations are

presented to demonstrate the availability of the method.

1. INTRODUCTION

JSCE

The structure damage may be caused by many reasons, i.e. cracks, yieldings, corrosion

losses, and concrete spalls, etc. All of these result in the degradation of stiffness.

damage is severe, sometimes the degradation of stiffness may reach to 50%~70% ’.

[f the
So the

damage estimation of structure is a long-standing concerned problem for engineers. From the

tested result of damaged and undamaged natural frequencies, the global damage of structure

can be evaluated . By the identification of stiffness and damping of structure, also the

damage of the structure can be estimated. There are many researches 8.4 5 iy ywhich the

time~history methods are introduced to identify the structural parameters. However,

these

identification methods meet with the following difficulties: (1) The accuracy of the
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identified results will be greatly influenced by the existence of noise ®>; (2) To obtain the

records of stress and strain history, a great number of instruments must be installed on the
structure ®’; (8) The chance to obtain the strong earthquake records is rare; and (4) To
analyse the whole motion history of structures will take a lot of computational time

In order to avoid these difficulties, the method by the use of modal analysis was con-

)

siderablely developed in recent years. Berman et al ™' * developed the technique of identi-

fication for aerospace structures by use of vibrational tested results; Fritzen et al *’

19 estimated the

studied the identification method for mechanical system; Hielmstand et al
structural parameters by introducing the complicated mutual residual energy method. As for
the damage detection from vibration inspection in civil engineering, Shimada et al '?’
investigated the vibrational characteris'ics and strengthening efficiency of damaged arch

1% estimated successfully the damage of

bridge. [t is worth mentioning that Hearn and Testa
welded steel frame and wire rope by using the ratios of changes in natural frequencies
However, this method is limited on small deterioration of structure. Therefore, Hearn's
method is not applicable for the case of severe damage, such as the structural damage
caused by strong earthquakes

As an attempt to improve the previous methods which are applied to detect the stiffness
degradation of structural elements by using modal analysis, this paper presents a simple method
which can be used to estimate both the location and severity of damage by use of the lower
tested modes, i.e. natural frequencies and mode shapes. Two numerical examples are presented

to demonstrate the availability of this method.

2. MODAL ANALYSIS INSPECTION

The equation of undamped free vibration system with N degrees of freedom, is described

as follows

(Ko — @o®Mo Yo = 0 (1)
where Ko and Mo = the global stiffness and mass matrices, respectively; éo = the normalized
mode shape; and wo = the natural frequency.

Changes in stiffness and mass matrices (AKX, AM) produce changes in wo® and ¢,. For
the perturbed system, Eq. (1) leads to

[(Ko+tAK ~w? M tAM] ¢ = 0 (2)
where, w’=wo°+Aw?® and ¢=¢do+ AN ¢

Multiplied by & ", Eq.(2) becomes

T Kat AN d=0"w M +AM ¢

=w ¢ Mo +AM) ¢ (3)

As the ¢ is the normalized mode shape, naturally the ¢ satisfies

"M+ AM ¢ =1 &)
where, I is identity matrix.

From Eq. (4), Eq.(3) leads to

T Ko+ AN P =0w? (5)

For general engineering problems, only the lower modes can be obtained by vibration test.
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[f the lower L modes have been obtained, these modes are expressed as follows

Fw.* 0
Q.2 = w2? y @u=(d1, b ... P0)
0 WL
Replacing the w? and ¢ by Q.? and @, in Eq. (5) and Eq. (4) yields
O,"NKD,=Q .2 — ©,"K, D, (6)
LA, =1, — LMD, (N

where 1, is LXL identity matrix.

¥hen L =N, the exact AK and AM in Egs. (6), (7) can be obtained. However, since L < N,
generally the exact AK and AM can not be obtained, only for their approximate solutions.
Introducing pseudoinverse matrices ®.% and (®.")" '®’, the least-squares solutions of

AK and AM are consequently obtained as follows

A = (0.7 [Q.° — .7k D.] @, (8)
AN = (0. [I. — O, ™M ®D.] D7 (9)
The detailed steps to obtain the ®," are expressed as follows
(1) Calculate all the eigenvalues A ., A5, ... A. of product ®."® L (L xn % xxXi-1x 1
(2) Obtain the eigenvector matrix Q=(Q:, Qs ...Qu) x1y in which Qi, Qz,...Q.
correspond to A ., A2, ... AL
(3) Obtain 1/,
I, = /1%,
. VR axw

(4) Calculate the product P = ®, Q II, (nxi-n%X1x X1 % LX)
(5) Calculate the pseudoinverse matrix ®.* = Q I P* (1 xwer 1 % Lx1 X L%

From the steps (1)~(5), it is easy to know that the main work for obtaining the @,
is to calculate the eigenvalues and the eigenvectors of ®."®. and is to do the matrix
multiplication. Moreover, since L is generally small, it only needs a short time of
computation to obtain the ®.". Further details regarding the accuracy evaluation of the
®." are available in the work of Masri et al'* ''®,

In steel structures, yieldings and cracks cause the degradation of stiffness without loss
of mass, so AM=0.

Deterioration of structures will alter stiffness and change the modes. The magnitude of
change depends on both the location and severity of the deterioration and will affect each
vibration modes differently, having a significant effect on certain modes and weak effect
on others. This dissimilarity of the effect on each mode is the basis for detecting the
damaged elements by modal analysis inspection.

If an undamaged structure is divided into a certain number of nodes and elements adequately
as a FEM model of that structure, the location of damage can be detected by surveying the
change of coefficients in global stiffness matrix for the structure before and after

damage. The practical procedure is discribed as follows:
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Substituting the undamaged global stiffness matrix Ko, measured natural frequency Q.2
measured mode shape ®. and pseudoinverse matrix ®.” into Eq. (8), a percentage of change
ratio Akii/koero (i=1,2,...,N) for diagonal stiffness coefficients are calculated. According
to the magnitude of the change ratio, the node in which the ratio is remarkable is therefore

found not and recorded.

3. SOLUTION OF UNKNOWN COEFFICIENTS

When the node in which the stiffness has probably been changed is found out, each non-
zero stiffness coefficient in the column({ or row) corresponding to this node in global
stiffness matrix is multiplied by an unknown coefficient ax respectively. For instance,
if the stiffness coefficients are multiplied by a« in the /th and Jjth columns, the global

stiffness matrix therefore becomes

/{1,1... 111:(’1,(... aNl+lkl,j«~~ :"1.N
/(2,1 azl{’z,( aNr+2/(2.j l"z.N

K(a) = . . . . (10)
kn,l ...aNl:fN,l aNI+N]kN,j IN,N

where, NI, NJ are the numbers of non-zero stiffness coefficients in /7th and /th columns
respectively, and the total number of a is NF=NI+NI.

It is worth mentioning that in 2-D/or 3-D structures, the stiffness coefficients in two
J/or three directions of axes should be supposed by a« corresponding to each node (see
Section 4).

In"the vibration equations of structures, there are N equations corresponding to each
mode. If all the L measured modes are used, the L - N equations can be obtained. Substituting
K(a) into the vibration equations and arranging the L - N equations, the following new
equations can be obtained

Aa* =B (1
where, a*=(a;, @2, ... @~xr), A and B are known NFXNF matrix and NFX1 vector respectively.

When | A| #0, the exclusive «* can be obtained. I1f NF>L N, it needs addtional measured
modes. After all the unknown coefficients a* are solved, the K(a) is the identified result

of the global stiffness matrix.

4. GUYAN REDUCTION

Because of the complexity of the actual structure, not all the degrees of freedom can be
measured. Such measurement system is called incomplete measurement system. For example the
measurement of rotation is comparatively difficult. Therefore in the procedure of structural
identification, it is necessary to exclude the rotational degrees of freedom from the
stiffness matrix. In vibrational equations of structures, if the rotational degrees of

freedom and translational ones in X and Y axes have been segregated. Subsequently the
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rotational degrees of freedom have been excluded from the vibrational equations, the condensed
stiffness matrix for the translational degrees of freedom is therefore expressed as
Kxx  Kxv KxeKer ™ 'Kx KxrKez 'Kuv
Koo = KeoKer = - (12)
Kyx Kvv KveKer ™ 'Krx KyeKer ™ 'Kavy
where, the subscripts X, Y and R indicate the translation in X, Y axes and rotation
respectively.

Obviously, K*«: is the translated result of the K... Therefore, Guyan Reduction remains
the corresponding nodal relationship between K*.. and K... When a damage occurs on an element,
for instance the modulus of elasticity E or cross-section properties reduces '?, all the
submatrices in Eq. (12) lead to change. In other words, even the condensed stiffness matrix
Ki:* is identified, the uncondensed stiffness matrix K.. is not identified yet. Therefore
the change of stiffness for nodes is not estimated. Furthermore, the degradation of the
structural element which corresponds with these nodes is not evaluated. However, a calculated
result of a simply-supported beam in this paper shows that there is no change in axial stiff-
ness in the procedure of Guyan Reduction. It can be explained from the Eq. {12}, if the axial
direction is the X direction and Kxe is zero, the KxxKee 'Kzx is also zero. Once the axial
stiffness shows a significant change before and after damage, it indicates the degradation
on modulus of elasticity or cross-section properties of structural elements which correspond
to the nodes, so the degradation of the elements can be evaluated. Therefore, it may be
considered to be necessary to remain the axial degrees of freedom for the damage evaluation

procedures of structures.

5. APPLICATIONS

According to the method described above, an analytical program has been developed and

applied to the damage estimation of the following problems:

Example 1: Fig. 1 shows a
= 2
simply-supported steel beam E=2.1x10" tf/n® GEY—S%gOO t/u
with 13 nodes, 12 elements, v I=5.34x107* a* "
A=8.0x10"° n?

and 23 translational de-
grees of freedom. The
stress-strain relationship

of the material is shown in

Fig.2. [t is supposed that ! 4 345878900 ?%2293

the loads acted on the beam 3.6 m l 0 ey e
increase monotonically. Fig. 1 Simply-Supported Beam Fig.2 Stress-Strain
Once some elements in the Relationship of material
beam are yielded, there will occur the stiffness degradation on these elements. When a

percentage of damage ratio of axial stiffness ( =100 X [ (hov:i—41:) hot1) axrar ) iR
node 7 (the center of span) reaches 55 %, Guyan Reduction is done for the global stiffness

matrix and the vibrational modes are consequently obtained as the measured modes of damaged
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state. The change ratios Table 1 Identified Results of Stiffness (tf/m)

of wvertical and axial

stiffness for each node UNDAMAGED DAMAGED
are calculated by Eq. NODE
(8). The calculated re- UNCONDENSED CONDENSED IDENTIFIED EXACT Eri:

sult shows that change
ratio of the axial sti- | 7-X 0.11200E+07 | 0.11200E+07 | 0.50540E+06 | 0.50b40E+06 | 0.0 %

ffness is much smaller
than the vertical one. 7-Y 0.99735E+06 | 0.59649E+06 | 0.19788E+06 | 0.15515E+06 | 27.5 %

O 7 MODES 8-X 0.11200E+07 0.11200E+07 0.73920E+06 0.73920E+06 0.0 %
A 6 MODES
[1: 5 MODES 8-y 0.99735E+086 0.59648E+06 0.27988E+06 0.21558E+06 | 29.8 %
+ 4 MODES
& 3 MODES 9-X 0.11200E+07 0.11200E+07 0.10465E+07 0. 10465E+07 0.0 %
X 2 MODES
1 MODE 9-Y 0.99735E+07 { 0.59642E+07 { 0.50970E+06 | 0.42909E+06 | 18.8 %
ot
8.0-4 .
é; 1515
= 5.0 — glz_‘
w.m [s =4
on 4.0 — <
Wl w
ot = 37
ok 3.0 Z
< =5
T 2.0 =
b 2
22 1.0 A T 3
O hd
r— -
& 0.0 & o T T T T T T
0123 456 7 8 910111213 a 0 4 8 12 16 20 24

NUMBERED NODES NUMBER OF MODE MEASUREMENTS

Fig.3 Estimated Result of Fig.4 Variation of Identification

Used 1 ~ 7 Modes Error with Number of Tested Modes
Therefore the change ratios of vertical stiffness for all the nodes of the structure are
shown in Fig.3 in which the 1 mode, 2+ - -7 modes indicate the 1th mode, 1th~2th- - - Ith
~T7th modes, respectively. Also this indication is available in the following paragraphs.
Among these 13 nodes, the change ratios of 7 nodes, i.e. 17,5,9,2,12,6 and 8 are remark-
able. So the change of stiffness is presumed on these nodes. Afterwards the unknown coe-
fficient @y is supposed on the stiffness coefficients for these nodes in the condensed
global stiffness matrix. If the a is supposed on the coefficients regarding all the 7
nodes (14 degrees of freedom), the total number of unknown coefficients NF is greater than
the number of arranged equations L - N under the condition of used 7 modes. Therefore, the
ax is only supposed on the coefficients for partial nodes. However, if the @« is supposed
on the positions for nodes 7,5,9,2 and 12, the identified result of vertical diagonal stiffness
of node 2 in the global stiffness matrix is -0.77299 X10° tf/m. Obviously, this is an
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unreasonable result. Subsequently, the a. is supposed on the positions for nodes 7,5, 9,6,8,
and the identified result of diagonal stiffness coefficients of nodes 7,8,9 (symmetrical
about 7,6,5) is listed in Table 1.

Focusing attention on the identified diagonal stiffness coefficients, the percentage of
identification error Eg:: is defined as

Beco = I [idexacr = Chidioenririen] /(A exacr | X100 (I=1,2,...0) (13)

The calculated Eri: is also shown in Table 1 in which all the results are calculated by
way of the double precision. Furthermore, the mean error of identification is defined as

Ea = (Z Er:1) ND (14)
where, the ND is the number of diagonal unknown coefficients among the NF. The L means
the summation of these ND unknown coefficients.  The the calculated result of the Em is shown
in Fig. 4. With the increment of the number of measured modes, the Em will tend to zero. When
the stiffness coefficients of all the nodes have been identified, the Em should be zero. So
the main reason of error is whether or not the a« is supposed on the real positions in

the changed stiffness matrix.

In order to discuss the sensitivity to O : 23 MODES A : 10 MODES
detection of severity of damage, Fig. 5 shows the [J: 9 MODES + : 8 MODES <> : 7 MODES
relationship between the damage ratio of axial X : B MODES - : 5 MODES 3% :4 MODES
stiffness and change ratio of vertical stiff- 100
ness for the results of used 4,5,6, 7, 8 9, 10 o
and 23 modes (where 23 modes implies that all E,\ 80 —
the modes regarding the 25 degrees of freedom gg
are measured and the result of 23 modes means &2 80
the exact solution).  When the damage ratio of Ei 10 —
axial stiffness in node 7 reaches 79 %,  Fig. 5 ‘:Jﬁz'i
shows that it is possible to detect the damaged %E 20 7
node by using some lower measured modes, for 5o X~
instance, 4 or 5 modes. However, when the ’ ﬁo 20 40 Gr;) 810 10‘0
severity of damage is small, it is comparative- g????ﬁe?ﬂﬁ gEDéX}M{“
difficult to detect the location of damage by Fig.5 Relation between Damage Ratio of
the lower measured modes. Axial Stiffness And Change Ratio

It is easy to know from Egs. (8), (10) and (11) of Vertical Stiffness

that a error of measured mode has a direct effect on the damage location detection and
identified result. Therefore, the effect of error in measured modes on the identified result
will be discussed in the next Discussion ! and 2.

Discussion 1: In the actural procedure of mode measurements, the reasons resulting in errors
and the types of errors may be complicated and varied. In this paper, therefore, a simple one
of the errors, a proportional error, as similar ot reference '®’, is used to examine the
effect of measurement error on the identifition results. In this paper, the measurement error
of a certain mode shape is defined: If a percentage of vibrational amplitude is increased

/ot decreased in one node, the same percentage is decreased/or increased the neighbour nodes.

Similarly, the proportional error of natural frequencies means that all the measured natural
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frequencies are simultanously reduced a certain percentage of respective frequency itself
¥hen the proportional error of natural frequencies ranges from 0, 5, 10, 20, 50 to 100
percentage respectively, the vertical stiffness change ratios of used 7 modes are shown
in Fig.6. Furthermore as Fig. 6 shows, the location of maximum change ratio of vertical
stiffness in node 7 remains unchanged under the condition of these proportional errors.
Also when the proportional error of mode shapes ranges from 8, 5,6 10,20 to 50 percentage
respectively, the vertical stiffness change ratios of used 7 modes are shown in Fig. 7 and
the location of maximum change ratio of vertical stiffness in node 7 also remains unchanged

under these proportional errors of mode shapes.

O: 0% A: 5% [J: 10% O:0% A: 5% [J:10%
+:20% O:50% X :100% +:20% O 50 %
10.0 _P 50.0 —%

(%}
(X)

-

o

o
|

30.0 /

CHANGE RATIO OF VER-
TICAL Sx&FFNESS

o

L=

1

CHANGE RATIO OF VER-
TICAL STIFFNESS

10.0
— 1 T 9.0 T TLT
b1 2545678 810111213 0123 45678 310111213
NUMBERED NODES NUMBERED NODES
Fig. 6 Effect of Proportional Errors of Nat- Fig.7 Effect of Proportional Errors of
ural Frequencies on Damage Location Detection Mode Shapes on Damage Location Detection
(O : PROPORTIONAL A : MODE 1 (O : PROPORTIONAL A : MODE 1
[1:MODE 2 + :MODE 3 < : MODE 4 [J:MODE 2 -+ :MODE 3 <> :MODE 4
X :MODE 5 - :MODE 6 3¢ :MODE 7 X :MODE 5 -+ :MODE 6 3% : MODE 7
A -
‘;100 ﬁ 5100 ./J
w i
§ 80 — T 80 -
o [+~
- 60 i
=z ] 60 —
o 3
= =
§ 40 ~ g 40
w w
£ 20 - 20
4
i f Z
2 a
0 I T T T 1 0= T T T 1 T
0 20 40 60 80 100 0 20 40 §0 80 100
MEASUREMENT ERROR OF
NATURAL FREQUENCIES (%) EEAﬁggEMEﬁZPEgR?Q,
Fig.8 Effect of Measurement Errors Fig. 9 Effect of Measurement
of Natural Frequencies on Enm Errors of Mode Shapes on En
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Discussion 2: As for the effect of the measurement error of modes on the identified
result, the effects of proportional error, imposed on the all the 1th~7th natural
frequencies on the Ex are shown in Fig. 8. Also the effects of proportional error imposed
on only /th mode shape among the 7 mode shapes on the En are shown in Fig.9. Figs. 8 and
9 show that some modes have strong effect on the Em (modes 4,5 and 3 etc.), and some modes
have comparative weak effect (modes 1 and 2). Also under the condition of same percentage
of the proportional errors, mode shape has the greater effect on the En than natural
frequency does. For instance, the 10 % proportional error of natural frequencies (see

Fig.8) and mode shapes (see Fig.9) leads to about 16 % and 95 % of the Em respectively

Example 2: Fig. 10 presents a bowstring
steel truss with 12 nodes, 25 elements
and 21 degrees of freedom. The nominal E=2.1x107 t{/m*

y=17.86  ti/n®

areas of the members are as follows: Y o ,=30,000 tf/n*

Bottom chords 0.06 m? top chords
0.0312 m®, verticals 0.024 m®, and

diagonals 0.024 m®>. The stress-strain

relationship of all materials are

elastic-perfectly-plastic model. It is

supposed that Py is the constant load
of 20 tf and Px increases monotonically
When the damage ratio of axial stiffnc- Fig. 10 Bowstring Truss

ss in node 2 reaches 89 % (the elements

(-2 and 2-3,i.e. (D and @ have been yielded), the vibrational modes are calculated as the modes
of damaged state. Fig.11 shows the estimated results of used 1~4 modes. Also the estimated
results of vertical stiffness show that

there are significant change on nodes

2, 8 9 and 3. Therefore the ay is Table 2 Identified Results

supposed on these nodes. The identified of Stiffness (tf/m)

results of axial stiffness of node 8

and vertical stiffness of node 2 in the DAMAGED

diagnoal coefficients of global stiff- NODE | UNDAMAGED

ness matrix are about +7 and +176 IDENTIFIED | EXACT Erit
times of undamaged ones if the ay is

supposed on nodes 2, 8 and 2, 9§ 2-X 232168.1 24161.8 24481.91 1.3 %
respectively. Obviously, these results

are also unreasonable. 2-Y 95737. 8 94928.6 95310.7 (0.4 %
Therefore, the @« is supposed on nodes

2,3 and the identified results and the 3-X 258938. 17 154568.5 | 154073.6 [ 0.3 %
Ew are shown in Table 2 in which the

accuracy of identification is satisfied 3-Y 84575.2 84094.3 84563.3 | 0.6 %
well.
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Fig. 1l Estimated Result of Fig.12 Variation of ldentfication

Used 1~4 Modes Error with Number of Measured Modes

As same as the Example 1, the effect of error in measured modes on the identified result
will be discussed by the same way in the next Discussion 3§ and 4.
Discussion 3: When the proportional error of natural frequencies ranges from 0, 5,10, 20,
to 50 percentage respectively, the vertical stiffness change ratios of used 4 modes are
shown in Fig. 13, [urthermore the location of maximum change ratio of vertical stiffness(in
node 2) remains unchanged under the condition of these proportional errors. Also the vertical
stiffness change ratios of used 4 modes are shown in Fig.14, When the proportional error of
mode shapes ranges from 0, 5,10,20 to 50 percentage respectively. Moreover the location of
maximum change ratio of vertical stiffness (also in node 2) remains unchanged under the

condition of these proportional errors of mode shapes.

O: 0% A: 5% [J: 10% O: 0% A: 5% [J:10 %
+:120% 50 % +:20% O 800 %

, 16,0 |-

o » o »

Wi~ Li—

- >

2.0 v

ow om

w (18]

o= oz

ok 8.0 cE

< — < —

o cr

w w

W40+ w .

Z T zZ <

<L £ O

&- F

Cr 00T T T T T YT T T 11

01 2 3 45 6 7 8 9101112
NUMBERED NODES

Fig.13 Effect of Proportional Errors of Nat- Fig. 14 Effect of Proportional Errors of
ural Frequencies on Damage Location Detection Mode Shapes on Damage lLocation Detection
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(O : PROPORTIONAL A : MODE 1 (O : PROPORTIONAL A : MODE 1
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Fig. 15 Effect of Measurement Errors Fig.16 Effect of Measurement
of Natural Frequencies on En Errors of Mode Shapes on En

Discussion 4: Being similar to Discussion 2, the effects of proportional error, as well as
the measured errors of the Ith~4th natural frequencies on the En are shown in in Fig. 15.
Also the effects of proportional errnr. as well as the measured errors of the 1th~4th mode
shapes on the En are shown in Fig. 16. Besides, Figs. 18 and 14 show that some modes have
strong effect on the Em (modes 1,2 and 3), the other has comparative weak one (mode 4)

Moreover, it is evident that mode shape has the greater effect on the E, than frequency does

6. CONCLUSIONS

The main conclusions in this paper can be summed up as the following six points:

1) A method to detect the stiffness degradation of structural elements by the use of modal
analysis inspection has been demonstrated. By this method, both the location and severity
of damage can be estimated

2) Guyan Reduction is used to deal with the case of incompletely measured system. The cal-
culations on the simply-supported beam shows that the change of vertical stiffness may be
used to detect the possible damage location. The change of axial stiffness may be used
to evalute the actual degradation of structural elements for such kind of structures.

3) For the structure with severe damage, it is possible to detect the damage locations by
using the lower measured modes. The required numbers of measured modes are about 1/4 ~
1/5 of the whole degrees of freedom N.

4) As for the effect of the number of measured modes on the identification result, as
Figs. 4 and 12 show, the identification error decreases as the number of mode measure-
ments taken increases.

5) The effect of the measurement errors on damage location detection is also discussed
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in this paper. The location of maximum change ratio of vertical stiffness remains
unchanged under the condition of certain ranges of proportional errors of modes.

6) As to the effect of measurement errors on the identification results, this paper
shows that some modes have strong effect on the En and some modes have comparative weak
ones. Under the condition of same percentage of the proportional measurement error, mode

shape has a greater effect on the identification result than natural frequency does.

Damping ratio may be an important parameter in the modal analysis for damage detection of

'?> pointed out, damping change is clear evidence of damage in

structure. As the research
the structure. Furthermore, damping may be the only indication of distress when frequencies,
as well as mode shapes, are insensitive to damage estimation. Therefore, it is expected that
by the use of this method the research can be done on the damage estimation aspect for damped

structures.

REFERENCES

1) H. lemura, and P.C. Jennings: Hysteretic Response of A Nine-Story Reinforced Concrete
Building, Earthquake Engrg. Struct. Dyn., 3, Mar.,1974, pp. 183-201.

2) E. DiPasquale, J.W. Ju, A.Askar and A.S. Cakmak: Relation between Global Damage Indices
And local Stiffness Degradation, Journal of Structural Engincering, Vol.116, No.5. Mav
1990, ASCE, pp. 1440-1455.

3) M. Hoshiya and E. Saito: Structural Identification by Extended Kalman Filter, Journal of
Engineering Mechanics, Vol.110, No.12, Dec., 1984, ASCE, pp. 1757-1770

4) A. Morteza, M. Torkamani, A.X, Ahmadi: Stiffness Identification of Frames Using Simulated
Ground Excitation, Journal of Engineering Mechanics, Vol. 114, No.5, May, 1988, ASCE, pp.
753-776.

5) C.C. Lin, T.T. Soong, H.G. Natke: Real-Time System ldentification of Degrading Structures,
Journal of Engineering Mechanics, Vol. 116, No.10, October, 1990, ASCE, pp. 2258-2274

6) M.S. Agbabian, S.F. Masri, R.K. Miller And T.X. Caughey: System Identification Approach to
Detection of Structural Changes, Journal of Engineering Mechanics, Vol. 117, No.2,
February, 1991, ASCE, pp. 370-390.

7) A. Berman: Parameter Identification Techniques For Vibrating Structures, Shock Vib. Dig.,
11(1), 1979, pp. 13-16.

8) A. Berman, F.S. Wei and K.V. Rao: Improvement of Analytical Dynamic Models Using Modal
Test Data, AIAA/ASCE/AHS 21th Structures, Structural Dynamiecs, Structural Dynamic

Materials Conference, 1982, No.82-0743.

9) C.P. Fritzen: Identification of Mass, Damping, and Stiffness Matrices of Mechanical
Systems, J. Vibration, Acoustics, Stress and Reliability in Design, 108, (Jan.), 1986,
pp. 9-186.

10) K.D. Hjelmstad, S.L. Wood and S.J. Clark: Mutual Residual Energy Method for Parameter

Estimation in Structures, Journal of Structural Engineering, Vol.118, No.1, January

—770—



11)

12)

18)

14)

18)

1992, ASCE, pp. 223-242.

M. Sugimoto, S. Shimada, M. Kato and I. Fukushima: Study on Vibrational Characteristics
And Strengthening Efficiency of Damaged Arch Bridge, Proceedings of Japan Society of
Civil Engineers, No.432/1-16, July, 1991, pp. 127-135, (in Japanese)

G. Hearn and B. Testa: Modal Analysis For Damage Detection in Structures, Journal of
Structural Engineering, Vol.118, No.1, January, 1992, ASCE, pp. 3042-3063.

C.L. Lowson and R.J. Hanson: Solving Least Squares Problems, Prentice Hall, Englewood
Cliffs, N.J., 1974

S.F. Masri, R.K. Miller, A.F. Saud and T.K. Caughey: Identification of nonlinear vibra-
ting structures; Part 1: Formulation. J. Appl. Mech. Trans. ASME, 109, Dec., pp 918-922.
S.F. Masri, R.K. Miller, A.F. Saud and T.K. Caughey: Identification of nonlinear vibra-
ting structures; Part I : Formulation. J. Appl. Mech. Trans. ASME, 109,Dec., pp. 923-929.

(Received September 21, 1992)

—771—



