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NUMERICAL SIMULATION AND EXPERIMENTAL STUDY OF
DEEPER-WATER TLD IN THE PRESENCE OF SCREENS

By Zhongshan ZHAO™ and Yozo FUJINO**

ABSTRACT

This paper deals with the numerical simulation and experimental study of deeper-
water TLD. The term "deeper-water" is used to distinguish the depth-ratios adopted
in this study from those of very shallow-water TLD. Metal screens are introduced to
augment the lower damping accompanying deeper-water. The Boussinesq
equations, which are suitable for weakly nonlinear, moderately long waves, are
utilized to describe water motions in rectangular tanks driven horizontally to
experience sinusoidal oscillations. The physical presence of screens is modelled
mathematically with good accuracy provided that the extreme relative wave height
at resonance is small and the agreements between predictions and observations
are found to worsen with increasing wave height. The effects of water-depth ratio
and screens as they alter the characteristics of TLD are clarified.

INTRODUCTION

TLD(Tuned Liquid Damper) has been investigated extensively in the field of structural
engineering since its applications to ground structures was proposed in 1987[1].

Researches of TLD have, roughly speaking, followed two streams. Fujino[2], Sun[3]
studied TLD with very shallow plain water. In their formulations of the equations of wave
motion, the dispersion relation was implicitly represented in the scheme of discritization
of the continuum governing equations. The number of divisions was, therefore,
unfavorably linked to the water-depth ratio.

Noji et al [4,5] have experimentally explored TLD using deeper water. In their
researches, metal screens were incorporated into the plain water TLD to augment the
lower damping involved with deeper-water wave motions. Kaneko and Ishikawa[6]
proposed a numerical model to include the effects of screens.

This paper deals with numerical simulation of wave motions inside a rectangular
container installed with screens. Mathematical treatment of screens is essentially the
same as addressed in [6]. The Boussinesq equations, which are suitable for weakly
nonlinear, moderately long waves in shallow water, are here adopted to describe the
physics of wave motions of concern, and they are solved by utilizing a finite difference
scheme. Experimental observations are presented in a parallel way to facilitate
comparisons and assessment of the numerical model.
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2. GOVERNING EQUATIONS OF WAVE MOTION

A derivation of the governing Boussinesq equations is briefly described here for
reference convenience[7]. The basic assumptions are that the flow is irrotational and a
velocity potential exists.

We will limit the discussion to two-dimensional physics, though the extension to three-
dimensional situation is straightforward. The fundamental conservation laws of liquid
motion are adequately described, neglecting the damping force for the time being, by the
Navier-Stokes equations:

V.u=0, (1)

(i +u-Vyu= - V(E + gz),
ot p ()

wherein u(x,1) is the velocity vector (u,w), u and w are the horizontal, vertical particle

velocities, respectively, P(x,t) the pressure, p the density, g the gravitational acceleration,
t the time, and x=(x,z) with the z axis pointing vertically upward, as shown in Fig.1.
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Fig.1 Sketch of definitions

For an irrotational flow, the velocity u(u,w) can be expressed as the gradient of a scalar
potential @
u=vo (3)

The introduction of ® makes it possible to rewrite the two basic equations in terms of @ to
yield

Voo, (@
and

(5)
Boundary conditions are specified to obtain the governing equations. There are two
kinds of boundary conditions, the kinematic boundary condition(KBC) and the dynamical

boundary condition(DBC). The KBC on the free surface states the continuity of the air-
water interface and it takes the form

9% + 0P QQ = o® on the free-surface
o Xox  az (6)

—700—



where { is the wave height measured from the still water level. At the impenetrable solid
bottom the KBC specifies that

F5L0]
—= onz=-h
dz (7

wherein h is the still water-depth. On the air-water interface, both € and @ are unknown
and it is necessary to add a dynamical boundary condition concerning forces. Applying
Eqg. (2) on the free surface, we have

—w-gC+_+~‘VCD‘2 onz=_
(8)
where P, is the atmospheric pressure which could be set to equal zero.

The governing equations (4),(6),(7) and (8) are to be nondimensionalized in the
following manner:

x=kx, z'=£, t=k(gh)'"?t

y4
h’
0=5, w=ofAgh) "

A kh ’ (9)

in which k is the wave number and A is the characteristic wave height. The implied
normalization on velocity components are

U= A (gh)1/2u/

1_A h 1/2
< ' (10)
The difference in scaling for horizontal and vertical components is required by continuity.
The normalized equations are

H2( Byy + Bz7)=0, ezt .
WG+ eQxlx]l = @, 2=£G 2
W2+ ]+ ;—8 [12 0% + D7)= 0 z=€{, (13)
®, =0, z=-1. (14)

with p=kh and € =A/h . They correspond to Egs.(4), (6), (8) and (7), respectively. The
primes have been dropped for simplicity.

For the time being we assume p=kh is small, leaving e to be arbitrary. Since ®is
analytical, it may be expanded as a power series in the vertical coordinate,
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d(xzh)= 3 (z+1)N®y
n=0 (15)
where ®p = P (x,1), n=0,1,2,3,..., whose orders of magnitude are yet unknown. The
power series expansion of the velocity potential is more general and it is applicable to
the situation of large e. After substitution of Eq. (15) into Eqg. (11), a recursive relation

- 2V2
Byt Pn n=0,12,...
(n+1)(n+2) (16)
is obtained, from which we have
©1=P3=P5=0 (17)

because of Eq.(14), which states that ®1=0. Finally we have the expression

2

2 4
® =0 - Ez_ (z+1)2 V2 @ + ;_4 (z+1)4 V2V20 + OuS),

(18)

Eq. (18) is then substituted into the free surface boundary conditions, Egs. (12) and (13),
to generate

2
LHy + VH-(uo- 5-H2 Vo) + HY -ug

M e VAV eug)= O
6 o)= LUK (19)
and
dup . 2V £ H2un. V2
" + eUg-Vup + VH/e +p°V] 5 Hug-V7ug
£ H2 (V.ug)? - 1H2 v 2901 o),
*5 (V-uo) 5 5% J= O(u*) (20)
by defining H =1+ €{ and ug= V®q as the horizontal velocity at the bottom.

In stead of u,, we may introduce the depth-averaged horizontal velocity U defined by

e el w2
=1| dzvo=11{ dzVd(ug-~z+1)°VV-ug+---)
H) 4 H ), 2

2
=Up- uEHZVZUO+ oy,

(21)
which can be inverted to give
Up =0+ ﬁHEVZUwL o).
6 (22)
After Eq. (22) is substituted into Eq. (19), it follows at once that
Hy + eV(HU) = 0 (23)
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which is just the depth-averaged law of continuity. In terms of U Eq. (20) becomes

2
Uy + GV + zed + %(HQVZU)t
+p2V (- £ H2 G -vZu+ —2& H2(V. u)2- %v - Ti}= O(u4).
(24)

Up to this point, the derivation is valid for arbitrary ¢, and small p=kh. Egs. (23}, (24) can
be expressed in physical variables to be

Hi + V-(Hm)=0 (25)
Ui+ G-V + gVH +%(H2V2mt

2
vi-1H2T v2a+1H2v. 0)%-Hov .m)=o.
+ V{ 3 u u+‘2 (V- u) 5 u;}=0 (26)

The pressure field may be obtained from Eq.(5), the Bernoulli's equation whose

dimensionless form is
p=z+el0+ E(Ve) + Lol
u (29)

where p has been normalized by pgh. The approximate pressure field, in dimensionless
form, is

p=(eC- 2)- %fim2 - (z1)2] (v 240

+ & [ug-V2ug-(V-ug)]} + O(ud), (30)
or

_oq(t - - M2 - (a2 iy OU

p=pg(l- 2)- UHZ - @eh)2(V

— g2 2
+ U-VU (VU] + Opd), (31)
in physical variables, using depth-averaged velocity u.

For weakly nonlinear and moderately long waves in shallow water, Eqs. (25), (26) and
(31) are approximated to include terms of order O(g) and O{u2) to produce, in physical

variables,
G+ V-[(C+hu ] =0, (32)
2
Ui +ewVu + VE - Y Vv =0,
3 (33)
and
=pg(C-2)+2(2zh+ 22)V Ty,
p=pg(C 5 t (34)
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Equations.(32), (33) and (34) are called the Boussinesq equations. They are applicable

to describing wave motions under the conditions that £<1.0 and u<1.0, and within these
limitations their accuracy decreases with increasing wave height.

. MODELLING OF THE PHYSICAL PRESENCE OF SCREENS

The damping of water sloshing is essential to a TLD's performances as an effective
damper. Damping has been ignored in the derivation of the governing equations. In the
following discussion, however, a linear damping term accounting for the viscosity of
plain water will be incorporated into Eq. (33) to complete the formulation. The
momentum equation in the horizontal direction we actually use in the numerical
simulation is obtained simply by adding a linear damping term, Au, and an external

excitation term, Xs, to Eq.(33). This leads to

2
Gi+euVa+ V- “?VV-Ut £ U=¥s, )

in which A is coefficient of linear damping and it is a function of the tank size, the
viscosity and the frequency of water sloshing[9], or specifically

A=k (2ve) 2{1+(L/B)+n[1 -(2h/L)]cosech(2nh/L)+12‘-coth(nh/L)} (35)
for water sloshing inside a rectangular tank of dimension LxBxh, where L is the tank
length in the x direction, B the width and h the still water-depth, k the wave number, v the
kinematic viscosity of water, w the circular frequency of water oscillation [9].

The damping effects of screens are first addressed briefly before we continue to state the
modelling of the physical presence of screens.

Simply speaking, damping causes energy dissipation. Energy dissipation due to fluid
friction or viscosity happens all the time, inside the whole fluid body when and where the
liquid sloshes. The presence of a metal screen, nevertheless, results in local energy
dissipation while the fluid is passing through it. An immediate energy loss takes place
there and this leads to a water-head loss. The value of head-loss is considered to be a
function of the property of the screen, the flow state in the neighborhood of the screen
and the Reynolds number, it can be evaluated empirically[8].

There is a parameter termed the coefficient of hydraulic resistance, 8, that links the head-

loss quantitatively to flow state near the screen. § itself is a function of the property of the
screen only. The quantity of water-head loss is determined from expression

3(1pU?)
P9 (36)

AL =

in which U is the velocity of water passing the screen.

For screens made of circular metal wires, the resistance coefficient is, according to |.E.
Idelchik[8],

2

8 =ko(1-f) + L -1)7, (Re>109)

=

(37)
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8 = KRe Beq » ( 50<Re<103) (38)

5=22 4 8, (Re<50)

Re (39)

where k,=1.3( for conventional neither rusty nor dusty metal wires); f is the free-area

ratio; Seqis determined as & from Eq. (37); kpeis a function of the Reynolds number, Re,
and is estimated from the curve shown in Fig.2, which is fitted by us, from the data(Table
1) provided in [8], to be

Kre=A1+A2xRe+A3xRe2+AdxRe3+A5xRe4+A6xRe> (40)

wherein A1=1.710, A2=-0.6666x102, A3=0.2464x10+ A4=-0.4293x107, A5=0.3451x10
10, AB=-0.1028x10"'3, Re=Ud/v, d is the wire diameter , v is the kinematic viscosity of plain
water.

KIRe

1.35

1.20

1.08

0.90 ; ; L
0 200 400 600 800 1000 1200 Re

Fig.2 Correction factor of hydraulic resistance for Re<1000

Table 1 Correction factor of hydraulic resistance k'g, vs Reynolds number

Re 5.0 100 150 [200 300 [400 ]500 1000 | 1200
K'Re 1.44 |1.24 (1143 [1.08 |1.03 {1.01 [|1.01 }1.01 ]1.02

The mathematical treatment of the screens is clarified together with the explanation of
the finite difference scheme we adopt to discritize the continuum governing equations.

Two staggered meshes displaced with each other by half of one spatial-step, Ax/2, are
defined for the discritization of wave heights and depth-averaged velocities, respectively.
This is depicted in Fig.3.
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Fig.3. Sketch of the finite difference scheme

In the computation, two sets of simultaneous equations as represented by Egs. (32),
(33), respectively, are solved independently. Eq. (32) stands for a set of simultaneous
equations in terms of wave heights while Eq. (33) is for equations with respect to
velocities. To mathematically accommodate the effects of one screen, following [6], use

is made of the water-head loss, AL, which is evaluated from Eq. (35). The velocity, U,
passing through the screen is the average of the velocities defined at two mesh points
near the screen which are from the computation at the previous time step, i.e, U=( ui.1+ u;

)/2. AC is then utilized to modify ¢ to generate two wave heights, { = § + A5/2, {g = {; -

AL /2, which are actually used to update Eq.(32) before computation is continued to
obtain the velocity distribution at the next time level so that the presence of the screen is
"felt" or modelled.

The situation involving multiple screen could be deait with essentially the same way for
each individual screen, provided that the screens are spaced approximately above 15
wire diameters or more.

. RESULTS & COMPARISONS

Notations used in presenting the results are defined first. L=tank length; B=tank width;
h=water depth; D=amplitude of base excitation; d=diameter of wires of screens; all wave
heights refer to the wave height on an end-wall.

Since we are essentially dealing with resonant motions of water inside rectangular
containers, the frequency parameter used in presenting responses is rendered
dimensionless with respect to the fundamental frequency, fw, of water sloshing in a
rectangular tank. fwis evaluated from

f-1,/™ guiak i
W= / L tanh( L) (in Hz)7 @1

as is well known, wherein g is the acceleration of gravity.

Useful data of extreme wave heights and total base shear forces from shaking table
experiments are provided by the Technical Research Institute of Mitsui Construction Co.,
Ltd. besides those obtained from the experiments conducted for this study.

For one experimental case, a rectangular tank partially filled with plain water installed
with or without screen(s) was driven to experience harmonic, horizontal translation with

—706—



single amplitude of D, the steady-state wave height near one end-wall and the total base
shear force induced by water sloshing are measured simultaneously, as shown in Fig. 4.

Wave gage

'xs/= Desinot, J

ces T T T

! g N

Fig. 4 Experimental set-up

Dummy mass

Displ. meter

L2

T

Experimental observations and numerical predictions of frequency responses for both
the wave height near one end-wall and the base shear force are presented in a parallel
way to facilitate comparison and assessment of the mathematical model. Also displayed
are some samples of time-history of wave height and base shear force.

Based on the comparisons, comments will be made on the numerical model. The
applicability of the current numerical model is further discussed. Fig.5 presents
experimental and theoretical results of wave height for two cases
(LxBxh=150x60x37.5cm, expected free-area ratio 51.3%, wire diameter 1.1mm,
nondimensional amplitude of excitation D/L= 0.15cm /150cm= 0.001)in the presence of
one screen or three screens. Positive extreme wave height is plotted against the forcing
frequency of base excitation. The experimental data are provided by the Technical
Research Laboratory of Mitsui Construction Co., Ltd.

0 Wave height, mm

35 F.. LxBxh=150x60x37.5¢m, D/L=0.15/150=0.001

30 f : —— Simulation |3
£ A O Experiment 1

25 L Screen=1 ® Experiment | ]

20 F SErEeHss

15 Fo

10 F

o E : ; i i
0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
Frequency ratio

Fig. 5 Frequency response of wave height: Simulations & observations
Numerical predictions compare favorably with experimental observations for these two
cases. It should be pointed out, however, that the free-area ratio used in the numerical

model is 60% instead of 51.3%, and this value is remained unchanged in the numerical
simulations for all cases and good agreements are found. This may justify the
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modification of the free-area ratio in the numerical model, because errors might be
involved in manufacturing the screens, If the empirical formulas relating the head-loss to
the properties of a screen are supposed to be accurate enough.

Hydrodynamic force, kg

15 T T T T T T T T i

(screen=1, LxBxh=150x60x37,5cm, D/L=0.16/150cm=0.001)

| e—eSimulations . o i
10 oo EXperiments : :

0 i i
0.51 0.60 0.68 0.77 0.85 094 1.03 1.11 120 1.28 1.37
Frequency ratio

Fig.6 Hydrodynamic forces: Simulations & observations

The frequency response curve of hydrodynamic force corresponding to the curve of one
screen in Fig. 5 is depicted in Fig.6, wherein the theoretical estimates are calculated
from the wave profile and the contribution of force transmitted to the tank from the screen
is also included. Predictions are compared with observations.

Fig. 7 shows the experimental frequency response curves of wave height for three
cases studied: 1)Plain water of volume LxBxh=59x33.5x9cm; 2)Plain water of volume
LxBxh =59x33.5x9cm with one screen of 70% free-area ratio, wire diameter of 0.6 mm;
3)Plain water of volume LxBxh=59x33.5x9cm with one screen of 50% free-area ratio,
wire diameter of 0.4 mm.

Wave height(observations), cm
T T T T l'

r T T
> Without screen : : :
*—+* With one screen, 70% free-area ratio:
*—* With one screen, 50% free-area ratio:

4 I LiBrh=50%33 5x9¢iti, D=04cm  f

0
080 0.84 088 092 096 100 1.04 1.08 1.12 1.16
Frequency ratio
Fig. 7 Frequency response of wave height: Experiments

In Fig.7, the frequency response curve of the case without screen is rather inclined and it
assumes a sharp peak at frequency ratio greater than unity. This indicates that the
sloshing motions in the case of deeper water is low-damped, nonlinear. The effects of
the screen in reducing extreme wave height at resonance, augmenting damping and
weakening nonlinearity of water sloshing could be clearly seen by simply comparing the
curve forms illustrated in the same figure.
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Fig.8 shows the comparison between experimental observations and numerical
predictions of the frequency response curves of wave height for case
LxBxh=59x33.5x9cm plain water, the amplitude of base excitation is 0.1cm.

Wave height, cm
6 T T T T T T T T

’-’ Slmulatlon
H Expenment

4 (LxBxh—59x33 5x9cm D 01cm)

(W|thout screen)

0
078 0.82 0.86 0.90 094 098 102 1.06 110 1.14

Frequency ratio

Fig.8 Frequency response of wave height: Simulations & observations

The match between the observations and predictions in this case is not so good as what
was shown in Fig. 5 where the relative wave height is much smaller. Larger discrepancy
in this case is attributable to the strong nonlinearity accompanying shallow plain water
sloshing with larger relative wave amplitude. Because the numerical model is accurate
for weakly nonlinear wave motion with small amplitudes and the accuracy is expected to
worsen with increasing wave height and stronger nonlinearity.

Samples of time-history of wave height and hydrodynamic force are displayed in Fig.6.
Agreements in the time domain are judged to be fairy good as well.

;”(‘) Tme hlstory of wave helght No.11 of case WNA1

/\ AN A PN AN

JATA '
0/ ATAva\viaY S e ARV
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1.0 F~i

O A
40 LN
-2.0

Kg
10

NS AR AT ﬁ
_0;’\/;\/ VA /g\/\/ VIV

-1.0

(a)Simulations

Tme hlstory of hydrodynamlc force No 11 of case WNA1
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5.

g'g Time-| hlstory of wave height, No 11 of case WNA1

L ://\ QL\v/\U/\U/\U/\ /\ /\ /\ /\ A

-10 :
20 i i i i

mm Time- hlstory of tank dlsplacement No.11 of case WNA1
20 —

/\/\/\/\/\/\[\/\/\f
_1‘2_\/\/\/\/\/\/\/\/\/\/

-20
0 100 200 300 400 500 600 700
:(go Tme ~history of hydrodynamnc force No.11 of case WNA1
05 [ ]
NWANITANA WANIAN /\ A\ /\ /\ VAN
-o_zvvvvvvvvvv
-10
(b)Experiments

Fig.9 Samples of time-histories of wave height and hydrodynamic force

DISCUSSIONS

Nonlinearity of water sloshing becomes weaker with increasing water-depth ratio and
the introduction of screens. This tendency is observed from several aspects:1)time-
histories of wave height at a point is rather symmetric with respect to the still water level;
2)frequency response curves of wave height are nearly symmetrical about a vertical line
passing the fundamental frequency point; 3)overall damping level, which is evaluated
from frequency response curve using half-power(band-width) method, is not so sensitive
to the amplitude of base excitation compared with very shailow water wave motions. This
is shown in Fig.10; 3)frequencies at which maximum wave heights occur in the response
curves remain almost constant against varying amplitude of base excitation for deeper-
water wave motions while they change significantly for wave motions of very shallow
water-depth, Fig.11.

Equivalent damping ratio

%
15
0—0 Screen=1

& Screens=3
©— Shallow TLD (after Sun)

FO b

(¢} 0.005 0.010 0.015
Nondimensionaf amplitude of base excitation, D/t

Fig. 10 Nonlinearity of water sloshing: Damping ratio vs amplitude of excitation
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Nondimensional resonance frequency
2 i T

*—e Screens=3

o—o Shaliow water TLD (after Sun)

10}~

i E—

0.005 0.010 0.015 0.020.

0.9
0

Nondimensional amplitude of base excitation, D/L.

Fig. 11 Nonlinearity of water sloshing: Resonance frequency vs amplitude of excitation

6. CONCLUDING REMARKS

1) Wave motions in rectangular TLD tanks installed with screens could be simulated by
the present model with good accuracy provided that the relative extreme wave heights at
resonance are small;

2)The accuracy of the numerical model decreases with increasing extreme wave height,
and this is theoretically expected from the applicability of the governing equations and
confirmed by the outcomes of the predictions;

3)Nonlinearity of water stoshing is weakened considerably with deeper-water and due to
the presence of screens;

4)The metal screens are very effective in augmenting the damping of water sloshing.

The presence of screens attenuates the nonlinearity of liquid motion.
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