膨潤性地山におけるトンネル路面変状の 3D 再現解析

九州大学	学生会員	○チョ1	・ ジルスレン	九州大学大学院	正会員	三谷	泰浩
九州大学大学院	正会員	谷口	寿俊	九州大学大学院	正会員	本田	博之
九州大学大学院	学生会員	蘇	栄	西日本高速道路(株)正会員	浜崎	智洋

1. はじめに

本研究で対象とするトンネルは、供用開始から10年 後に一部区間で路面隆起が認められ、18年後に最大 192mmの路面隆起が確認された(図1)。この路面隆起 を抑えるため、変状区間に47本の地中ロックボルトが 施工され、路面隆起速度が13mm/年から3mm/年まで 緩和した。しかし、当該変状区間はインバートが未設置 であることに加え、隣接して新設トンネルが施工され ることから、今後も路面隆起に関して監視と予測が求 められる。また、路面変状の要因である膨潤層は、トン ネル下の広いエリアに存在するため、その影響範囲と 物性値の特定が必要である。

そこで本研究では、トンネルの多測線の水準測量で 得られた経年の路面隆起変量をもとに、2次元 FDM 数 値解析を多断面で実施することで膨潤層の影響を空間 的に明らかにする。

2. 解析手法

2.1 解析区間・モデル・解析ソフト

路盤変状の著しい区間は非常駐車帯付近の約20m区 間であり、当該区間の最大断面を有する両端と中央の 3断面に対して解析を実施する。解析モデルは、地質縦 断図と地質横断図をGIS(地理情報システム)上で重ね 合わせることで作成し、解析モデルの下方領域と側方 領域は、それぞれトンネル直径の4倍とする(図2中の STEP-0)。また、解析は、2次元 FDM 数値解析である FLAC 8.0 (Itasca 社製)を使用する。

2.2 トンネル掘削の再現解析手法

再現解析の手順を,図2のSTEP-0からSTEP-4に示 す。まず,初期応力場を計算するために初期応力解析を 行う。トンネル掘削時の施工記録を参照し、トンネル掘 削後の天端沈下量は30mm、上半並びに下半水平変位が それぞれ10mm 程度であり、これらの内空変位値と解 析値が合うように、初期物性値を同定する。

次に、トンネル上半部を掘削し、応力解放率を40%に 設定する。続いて、上半の支保工を設置するとともに、 応力解放率を 60%に設定する。トンネルの下半部の掘 削と支保工設置時の応力解放率は上半と同様とする。

2.3 膨潤解析手法

図2のSTEP-5に示すように、トンネル下の膨潤性粘 土鉱物を含有する泥岩と凝灰岩の粘着力、内部摩擦角、 引張強度を劣化させることで、膨潤挙動を再現する。こ こでは、供用後18年に設置した地中ロックボルトもモ デル化する。また、路面隆起傾向を水準測量により計測 しており、計測結果と一致するように膨潤層のパラメ ータを同定する。また、事前解析として、膨潤範囲を考 慮せずに泥岩と凝灰岩の物性値を全て劣化させる解析 を実施したところ、水準測量の計測値による結果と合 致しなかった。このことから、膨潤範囲と物性値を変化 させて、膨潤現象を正確に再現することとする。

-451-

3 解析結果と考察

3.1 トンネル掘削の再現解析結果

再現解析で同定した初期物性値を表 1, 内空変位の 計測値と解析値を表 2 に示す。解析値が計測値より小 さくなっているが, 0.7mm から 3.6mm の誤差でトンネ ル掘削時の状況を概ね再現できている。

3.2 膨潤解析結果

膨潤解析結果の一例として、断面 C における路面隆 起の計測値と解析値を図3,物性値の推移を表3に示す。 図3より、物性値と膨潤範囲を変えることで路面隆起 をほぼ再現できている。表3の物性値の劣化推移に関 して, 膨潤性泥岩と凝灰岩の引張強度は, 路面隆起に影 響せず、粘着力と内部摩擦角の劣化が膨潤現像に大き く寄与することがわかる。物性値に関しては、地中ロッ クボルトの対策後も僅かに劣化していることも明らか となった。また,3 断面(断面 A, B, C)の解析から特 定した膨潤層の範囲を図4に示す。図4の膨潤範囲は、 各断面の解析で膨潤層の幅を特定後、それらを直線で 囲うエリアを膨潤層範囲としている。まず, 膨潤層の幅 は,水準測量で路面隆起が最も大きい断面Cにおいて, 広く存在し、断面 C から遠くなる断面 B, A の順に膨 潤層の幅は小さくなる。断面 C 付近には、断層破砕帯 が存在することから, 破砕帯から離れるほど, 膨潤層の 範囲は狭くなる傾向があると考えられる。一方で、膨潤 層幅は,各断面において経年的に拡幅している。特に, 膨潤層幅の拡幅は、断面 C より、断面 A が大きい結果 となっている。対象のトンネルは、解析モデル(図2中 の STEP-5)の右側で隣接工事が実施されることから、 引き続き路面隆起の監視が必要と考えられる。

4. おわりに

本研究では,路面隆起が確認されたトンネルに対し, 水準測量で得られたトンネルの路面変形量をもとに,2 次元FDM数値解析を多断面で実施することで面的に膨 潤層の経年変化を明らかにした。その結果,膨潤層の範 囲が僅かに拡大するとともに物性の劣化が進行してい ることが示唆された。

〈参考文献〉

- 土木学会トンネル工学委員会、山岳トンネルにおける模型実験 と数値解析の実務、社団法人土木学会、p.159、2006.
- 駒谷大三,横尾和彦,赤木渉:トンネル路盤下ロックボルト工 による路面隆起抑制効果,トンネル工学報告集, No.18/I-26, pp.1-5, 2018.

表1 初期物性值

岩種	変形係数 kN/m ²	ポアソ ン比	粘着力 kN/m ²	内部摩 擦角	引張強度 kN/m ²	ダイレイ タンシ角
凝灰角礫岩	5.00E+03	0.35	100	30	20	10
砂岩	1.00E+06	0.32	5500	45	1100	15
泥岩	8.00E+05	0.36	870	30	174	10
凝灰岩	1.30E+05	0.35	700	20	140	10

	天端沈下量	(mm)	上半水	平変位(n	nm)	下半水平到	変位(mm)
計測値	30			10		10)
解析值	29. 3			8.7		6.	4
230						225	227
220			214	217	220		221
210		206	208	211	215	218 204	206
200	<i>i</i>	201	195	197	100	201	203
ਿੰ ¹⁹⁰	187	192	194	196	155	,	
Ē 180	183					計測値(C)側線)
朙 170	176					解析值(C	(側線)
 强 数 160	168				_	計測値(N	側線) 個 線)
恒 ※ 150						所年17月11日(八	148
140			126	139	142	145	
140		132	130		135	138	141
130	122		129	131	135	計測値(K	(側線)
120		-124				解析値(ŀ	(側線)
₁₁₀ l	116						
10	6 17	18	¹⁹ 供	20 用経過年	21 数	22	23

表2 内空変位の計測値と解析値

断面 C	におけ	る路面隆	を起量の	計測値と			
表 3	経年劣化した膨潤層の物性値						
経過年数	岩種	粘着力 (kN/m²)	内部摩 擦角	引張強度 (kN/m ²)			
17	泥岩	195.88	20	69.6			
	凝灰岩	92. 5	8	56			
18	泥岩	195.88	18	69.6			
	凝灰岩	92. 5	8	56			
19	泥岩	182	18	69.6			
	凝灰岩	92. 5	8	56			
	泥岩	182	18	69.6			
20	凝灰岩	92. 5	7	56			
21	泥岩	182	18	69.6			
	凝灰岩	92. 5	6	56			
22	泥岩	175	16	69. 6			
	凝灰岩	90	6	56			
23	泥岩	175	16	69.6			
	4-7 mm + 1 +		•	50			

図 3

89

6

56

凝灰岩