$\log c_{\rm v} = \beta \log \rho + \log c_{\rm v1}$

βΓ

β**=0.25**

log p (kPa)

浚渫粘土の液性限界と圧密パラメータに関する相関性の地域性の検討

日建設計シビル 〇山崎誓也 片桐雅明 加藤亮輔 沿岸技術研究センター 森晴夫 井上吉弘

国土交通省九州地方整備局 西野智之 川端稔教 立石悠貴

- α log 10000

10 MPa

(cm²/day)

log c_v

(1) 圧縮性 α の設定 (2) 圧密係数 Cv1 の設定

log C_{v1}

1 kPa

 $\log f = \alpha \log p + \log f_1$ $= \alpha \log p + \log 1.58$

log i

f_{10MPa} ∓1.58

i1 kPa

log p (kPa)

g

log f_{10MPa}

<u>1. はじめに</u>

粘土の液性限界(以下, w_L)と圧密特性の関係には高い相関性 があることが知られている。根木ら¹⁾は,図-1に示すように低 拘束圧部を含む圧密特性を設定し,log f–log p を直線関係と したときの傾き α ならびに log Cv–log p の圧密圧力 1 kPa 時 の Cv 値 Cv₁ と w_Lの相関性が高いことを示し,w_Lから埋立解 析に用いる圧密特性を設定する方法を提案した。沖積粘土層の 圧密特性は、堆積している地域によって同じ w_L でも異なる圧

密特性となることが示されており²⁾,再構成させた浚渫粘土の低拘束圧下 の圧密特性においても、その地域特性を確認しておく必要がある。

そこで,既往の多層沈降実験結果を収集し,圧密特性の地域性を評価するために,全浚渫粘土の w_L と圧密特性を示す α や Cv_1 の相関性と,周防 灘周辺の浚渫粘土の関係について比較した。なお,圧密特性を示す図-1の 関係式の α と Cv_1 を,圧縮性ならびに圧密速度に関わる圧密パラメータ とした。

2. 極低拘束圧下の圧密特性の把握方法

図-2 は、多層沈降実験を行って求める粘性土の低拘束圧下の圧密特性 を求める手順³⁾である。具体的には以下のとおりに行う。

- i) 複数回の投入によって堆積した浚渫粘土層の泥面高さを計測する。
- ii) i)で求めた時間-泥面高さの関係から 3t 法によって圧密終了時を求め、 堆積した粘土層の深度方向の含水比分布を求める。
- iii) ii)の含水比分布から log f-log p を定め、 f_{10MPa} と α を読み取る³⁾。
- iv) iii)で設定した log f-log pを用い,事後解析によって i)の泥面高さの経時変化を表現できる log Cv-log p 関係を求め, 圧密圧力 1 kPa 時の Cv 値, Cv₁を決定する⁴⁾。

3. 収集した浚渫粘土に対する多層沈降実験の結果

表-1 に,収集した多層沈降実験の試料と液性・塑性限界と圧密特性と試験数を示す。今回収集した多層沈降 実験の試料は,北九州空港^{5,6)},新門司沖土砂処分場^{7,8)},東京湾⁹⁾,荒川下流¹⁰⁾,三河湾⁹⁾,七尾港¹¹⁾,徳山 港¹²⁾,沖縄那覇港¹³⁾の浚渫粘土を対象に行われたものであった。

採取地	試料数	液性限界wL(%)		塑性限界wp(%)	α	f _{10Mpa} 10MPaのf値	β	C _{v1} 1kPaのCv値	立时来日
		最小 最;	大量	最小 最大	最小 最大	最小 最大	最小 最大	最小 最大	入意用力
北九州空港	28	47.0 - 135.4	1	23.6 - 100.5	0.095 - 0.164	1.46 - 1.752	0.15 - 0.40	3.5 - 37.9	4),5)
新門司沖土砂処分場	8	40.5 - 116.)	12.3 - 74.2	0.079 - 0.134	1.51 - 1.629	0.19 - 0.25	7.5 - 50.0	6),7)
東京湾	2	54.0 - 108.	3	25.0 - 66.3	0.098 - 0.147	1.54 - 1.553	0.24 - 0.27	10.0 - 25.0	8)
荒川下流	3	80.2 - 89.7		41.2 - 48.9	0.081 - 0.12	1.47 - 1.563	0.25 - 0.25	12.0 - 18.0	9)
三河湾	2	59.3 - 93.8		29.1 - 54.9	0.108 - 0.12	1.58 - 1.627	0.20 - 0.28	15.0 - 20.0	8)
七尾港	2	90.0 - 145.)	60.0 - 107.0	0.132 - 0.161	1.46 - 1.463	0.12 - 0.16	6.0 - 10.0	10)
徳山港	1	111.6		38.6	0.126	1.672	0.3	9.6	11)
沖縄那覇港	1	71.0		45.8	0.16	1.58	0.25	7.0	12)

表-1 収集した多層沈降実験の試料の液性・塑性限界と圧密特性と試料数

各試料の物理特性は、wLが40~135 %と広範囲に位置し、圧 密パラメータはα = 0.095~0164, Cv1 = 3.5~37.9 であった。 4. 浚渫粘土のwLと圧密特性の相関性に及ぼす地域性

図-3 に、全浚渫粘土の w_L と圧密特性の関係を示す。(a)図の w_L と α の関係は右肩上がりの特性を有し、同じ w_L における傾 き α のばらつきは大きく、特に沖縄那覇港粘土は他の浚渫粘土 に比べ、 α は大きかった。同図の相関式の傾きは 0.0008、切片 は 0.058、決定係数は 0.73 であった。

(b)図の w_L と対数表示の Cv_1 の関係は右肩下がりで,(a)図と同様に同じ w_L における Cv_1 のばらつきは大きかった。この相関式の傾きは-0.021、切片は 75 cm^2/day 、決定係数は 0.758 であった。

図-4 に, 試料数が 36 試料と最も数が多い周防灘周辺(北九州 空港, 新門司沖土砂処分場)の浚渫粘土の w_L と圧密特性の関係 を示す。地域に絞ることで,同じ w_Lにおける α のばらつきは小 さくなることが確認できた。また, α の相関式の傾きは 0.0008, y 切片は 0.062 と,図-4 の関係とほとんど変わらなかったが,決 定係数は 0.833 と増加した。一方,(b)図の w_L と対数表示の Cv₁の相関式では,y切片が 97.36 と図-4 よりも 3 割程度増加 し,関係式の傾きは -0.024 で,絶対値で評価するとやや大きく なり,決定係数は 0.872 と向上した。

以上より,ある特定の地域に限定した場合の方が,全国各地 の浚渫粘土の試料を対象とした相関性よりも決定係数が向上 することが確認できた。つまり,粘土の圧密特性に地域性があ り,予測精度を向上させるために用いる圧密特性は,その地域 の粘土を対象に求めた多層沈降実験の結果を用いることが重 要であるといえる。

<u>5. 結論</u>

本報告では、全国各地の浚渫粘土と周防灘周辺の浚渫粘土の w_Lと圧密特性の関係に着目した。その結果、周防灘周辺の w_L と圧密パラメータの相関性を示す決定係数は全浚渫粘土のそ れらよりも高かった。また、ある特定の地域に絞ることで w_Lと 相関性が高くなることも確認できた。

<<参考文献>>>

図-4 周防灘の浚渫粘土の wL と圧密特性の関係

1) 根木ら(2019): 浚渫粘土の埋立解析に用いる圧密パラメータ 凶-4 回り無の夜保枯工の WL 2 圧密特性の関係 の設定方法,土木学会論文集 B3(海洋開発),Vol.75,No.2,I_223-I_228.2)田中ら(1991): 港湾地域における土の一次性質 の統計解析,港湾技研資料, No,719, 36p, 1991.3)山内ら(1990): 沈降堆積土の泥面変化解析と圧密係数,第25 回 土質工学研究会発表, pp.359-362 4) Katagiri, et al., (2001): Back analysis of reclamation by pump-dredged marine clay -Influence of ground water lowering-, S&F, Vol.41,No.5, pp.73-86. 5) 佐藤ら: 採取試料および事後解析から求めた浚渫粘 土の圧密パラメータ,第35 回地盤工学発表会, pp.1383-1384, 2000 6) 江頭ら: 浚渫粘土の圧密パラメータと wL の 関係,第56 回年次学術講演会,第3部, pp.304-304, 2001. 7) 宮地ら: 投入時の含水比を考慮した浚渫粘土の沈降 実験,第46 回地盤工学発表会, pp.263-264, 2011. 8) 國田ら: 低塑性から高塑性の浚渫粘土の多層沈降実験,土木 学会第72 回年次学術講演会, pp.829-830, 2017. 9) 久保井ら: 数種の海成粘土の圧密パラメータと初期含水比の関 係,土木学会第58 回年次学術講演会, pp.987-988, 2003.10) 信田ら: 河川浚渫粘土の多層沈降実験,土木学会第65 回年次学術講演会, pp.163-164, 2010.11) 杉村ら: 七尾港浚渫粘土の多層沈降実験,第48 回地盤工学会研究発表会, pp.1023-1-24, 2013.12) 片桐ら: 徳山港粘土の低拘束圧下の圧密特性,土木学会第73 回年次学術講演会, pp.357-358, 2018.13) 村川ら: 多層沈降実験における投入履歴の影響検討,令和2 年度土木学会全国大会第75 回年次学術講演 会, Ⅲ-258, 2020.