九州大学 学生会員 〇藏元航平,学生会員 福井誠司,正会員 梶田幸秀,フェロー会員 松田泰治

1.はじめに

惣領橋は, 熊本県上益城郡益城町にある 1988 年に 建設された橋長 33.3m, 2 径間 PC 単純 T 桁橋である。 平成 28 年熊本地震において, 写真-1 のように左岸側 橋台を基準点として,中間橋脚の梁上端で 309mm (上 流側),376mm (下流側)の沈下が確認された。その被害 の再現のため,右岸側と左岸側橋台付近の上流のボー リングデータを用いた不整形地盤モデルでの解析を実 施してきた¹⁾。中間橋脚が両側橋台よりも沈下すると いう現象については再現できたが,沈下量の大きさに ついては沈下被害を再現できなかった。そこで本研究 では,火山灰質粘性土の繰り返し作用による軟化を考 慮し,あらためて地震時の液状化による構造物被害予 測プログラムである FLIP を用いて有効応力解析を実 施し,中間橋脚の沈下被害に対して検討を行った。

2. 解析概要

図-1に地盤モデルを示す。地盤の物性値の決定には FLIP 要素シミュレーションツール(FLIPSIM)を用い た。FLIPSIMの簡易設定法により,各層の平均N値, 層中央の上載応力,細粒分含有率を入力し,物性値を 決定した。表-1に今回の解析で用いた各層の地盤物性 値を示す。通常,液状化解析では,地下水位面以下の 砂層を液状化層として設定する。文献1では,図-1に おいて赤字で記した左岸橋台直下の礫混じり砂(As1) などを液状化層(液状化による剛性低下を考慮する層) と設定したが,本解析では砂層に加えて,シルト (Ac1),有機質シルト(Apt)などの火山灰質を主体と

図-1 地盤モデル

写真-1 中間橋脚の沈下現象

表-1 各層の地盤物性値

世国	NI値	σv'(kPa)	Fc(%)	
20/首		層中央の上載応力(kN/m²)	細粒分含有率	
盛土	7	17.8	70	
礫混じりシルト質砂(rd)	6	12.1	7.4	
礫混じり砂(As1)	6	28	19.7	
シルト(Ac1)	2.2	35.6	70	
有機質シルト(Apt)	0.8	43.2	70	
シルト(Ac2)	1.5	54.5375	70	
砂質シルト(Ac2')	1.5	66.775	40.6	
シルト質砂(As3)	4.5	74.1	42.4	
シルト(Ac3)	2	89.5	70	
シルト質砂礫(Dg1)	32.4	132.7	11	
火山灰質砂(Dvs2)	15.8	168.7	39.1	
砂礫(Dg2)	30.3	200.4	15	
火山灰質シルト(Dvc)	14	258.1	70	
火山灰質砂(Dvgs)	44.3	324.375	5	

表-2 各層の液状化パラメータ

地層	Φ(°)	S1	W1	P1	P2	C1
礫混じりシルト質砂(rd)	28	0.005	4.788	0.5	0.662	3.191
礫混じり砂(As1)	28	0.005	2.575	0.5	0.505	3.185
砂質シルト(Ac2')	28	0.005	7.953	0.5	0.362	2.465
シルト質砂(As3)	28	0.005	4.26	0.5	0.467	2.734
シルト(Ac1)	28	0.005	175	0.85	0.457	2.9
有機質シルト(Apt)	28	0.005	21.8	3.3	0.346	4.93
シルト(Ac2)	28	0.005	220	1.05	0.398	2.65

図-2 入力地震動

I-046

する粘性土層についても液状化層として液状化パラメ ータを設定した。この際,粘性土層については,文献2) に示された益城粘性土の繰り返し載荷実験結果をもと に液状化パラメータをフィッティングにより決定した。 各層の液状化パラメータを表-2 に示す。モデル最下面 (工学的基盤)に入力した地震動は図-2 に示すとおりで あり,主要動である 16 秒から 46 秒までを入力地震動 とした。

3. 解析結果

粘性土の繰返し軟化特性を考慮しないモデル(以下, 考慮なし)と益城粘性土の繰返し載荷実験結果をもとに せん断剛性の低下を考慮するモデル(以下,益城粘性土 考慮)の2パターンで解析を行った。図-3,4にモデルの 最終変形図と過剰間隙水圧比のコンター図を示す。図-3.4 より、粘性土層を液状化層として設定したことによ り、過剰間隙水圧が上昇する範囲(剛性低下した範囲) が増えたことがわかる。また粘性土層の範囲では、もと もと液状化しにくい範囲ではあるので, 過剰間隙水圧比 がそれほど上昇していないこともわかる。次に, 図-5,6 に左岸橋台、右岸橋台、中間橋脚の天端部の鉛直上向 きを正とした変位を示す。 益城粘性土を考慮することで 沈下量が増大することは確認できるが, 左岸橋台から見 た中間橋脚の沈下量は考慮なしが 44mm, 益城粘性土 考慮が 87mm となり、実被害(約 300mm) との差はま だ大きいことが分かった。表-3 に各層の解析前と解析 後の層厚変化の最大値を示す。この結果, 地盤沈下に寄 与しているのは,砂質シルト(Ac2')であり,益城粘性 土を考慮すると砂質土層である砂質シルトの層がより 沈下する理由について現在検討中である。

4.おわりに

通常の液状化解析では考慮しない粘性土層の繰返し 軟化特性を考慮した二次元有効応力解析を実施した。そ の結果,地盤沈下の程度が大きくなることは確認された が,層厚変化が起きたのは砂質土層であり,粘性土層の 層厚については,それほど変化は起きなかった。

参考文献:1)梶田幸秀,丹藤修平,宇野州彦,松田泰 治:惣領橋の中間橋脚沈下被害に対する不整形地盤を用 いた検討,土木学会論文集 AI(構造・地震工学)Vol.76, No4, pp310-319, 2020, 2)一般社団法人九州橋梁・構 造工学研究会:2016年熊本地震被害調査・分析報告書, p299-327,2019

図-3 最終変形図(考慮なし)

図-4 最終変形図(益城粘性土考慮)

表-3 各層の層厚変化量

地層	考慮なし沈下量(mm)	益城粘性土考慮沈下量(mm)
礫混じりシルト質砂(rd)	10.9	8.2
礫混じり砂(As1)	36.6	7.4
砂質シルト(Ac2')	60.5	127.3
シルト質砂(As3)	13.1	24.7
シルト(Ac1)	5.8	4.8
有機質シルト(Apt)	1.2	1.7
シルト(Ac2)	6.8	7.1