片側前面隅肉溶接により補強したリベット継手・高力ボルト継手の引張実験

熊本大学 工学部 学生員 〇川崎 悟司 熊本大学大学院 自然科学教育部 学生員 秦 子策

1. 研究背景および目的

鋼橋のリベット接合部は,その凹凸形状から雨水の 滞留や塗膜の劣化による腐食が生じやすい.リベット 頭部の腐食やリベットの取換えに着目した研究^{1,2)}は見 られるが,連結板際部の母板が腐食する際部腐食に着 目した研究は少ない.文献 3)では,際部腐食した既設リ ベット桁から要素継手を切出し,片側の腐食した際部 を隅肉溶接する補強効果を引張実験により確認してい る.本研究では,連結板際部とリベット頭部がともに腐 食した場合を想定し,リベットを高力ボルトに取換え たうえで,片側前面隅肉溶接したボルト継手の引張実 験を行い,補強効果や片側溶接補強したリベット継手 との力学挙動の差異を確認した.

2. 実験計画

実験ケースは, 表-1 に示すように溶接なしリベット 継手(R),溶接ありリベット継手(RW),溶接あり高力 ボルト継手(BW)の3ケースである.図-1 にケース BWの形状を示す.いずれも,文献3)と同じ桁より切り 出し,同じ寸法である.ウェブ鋼板・リベット・高力ボ ルトの機械的性質を表-2 にまとめた.ウェブ鋼板とリ ベットの溶接割れ感受性組成 P_{CM} はそれぞれ 0.240, 0.194 であった³⁾.

前面隅肉溶接はエンドタブを用いた一方向手溶接と し,E側(桁の外側)の母板と連結板端部に対して行っ た.溶接前には塗膜除去・除錆・水洗・乾燥・脱脂を 行っている.設計のど厚は断面欠損による耐力低下を 溶接部で補うように3mmに設計した.

実験中は、荷重 P、母板-連結板の相対変位 δ_r 、母板 コバ面のひずみ ε_{side} を計測している.載荷速度は手動調 整で 2kN/s とした.最大荷重 P_{max} を確認した後は速や かに $0.5P_{max}$ まで除荷を行い、計測機器を取り外し、供 試体が破断するまで再載荷を行った.

実験結果および考察

実験結果を表-1 に示す.実のど厚 a は供試体の両側 コバ面にて計測した.純断面降伏荷重 P_{yn} は図-1 に示す 位置の母板コバ面ひずみ ε_{side} が降伏ひずみ ε_{y} (= σ_{y}/E)に 初めて到達した時の荷重である. 熊本大学大学院 先端科学研究部 正会員 森山 仁志 熊本大学大学院 自然科学教育部 正会員 松村 政秀

表-1 実験ケースおよび実験結果

			-				
実験 ケース	供体 番号	実 のど厚 a (mm)	純断面 荷 <i>P_{yn}</i> (kN)	純降した 面が位	最大 荷重 (kN)	破壊 モード	破断
Non-Weld (R)	1		425.5	P1-U2	531.2	端抜け+ リベット	A1
	2		437.2	A1-U2	504.1	せん断 破断	
Rivet+Weld (RW)	1 (1Pass)	A1 4.0 P1 3.8	459.3	A1-U2	635.8	端抜け+ リベット せん断 破断	A1
	2 (1Pass)	A1 4.8 P1 5.3	416.7	A1-U2	645.8		P1
	3 (2Pass)	A1 2.5 P1 3.0	393.7	A1-U2	552.5		P1
	4 (2Pass)	A1 3.5 P1 3.5	430.4	P1-L2	593.4		
Bolt+Weld (BW)	1	A1 2.6 P1 2.7	433.9	A1-U2	583.3	端抜け 破断	
	2	A1 4.0 P1 4.0	399.4	A1-L2	623.8	端抜け 破断	A1
	3	A1 2.1 P1 2.4	430.2	A1-U2	566.3	純断面 破断	

表-2 機械的性質(材料試験結果)

鋼種	採取 位置	供試 体数	弾性係数	ポアソン比	降伏点	引張強度	伸び	絞り	
			Ε	v	σ_y	σ_t			
			(MPa)		(MPa)	(MPa)	(%)	(%)	
SM490YA	A1	5	196,030	0.284	488.8	597.8	34.6	-	
	P1	5	195,310	0.293	457.1	605.0	37.3	-	
SV400	-	7	203,773*	0.290	342.3	507.9	26.6	70.8	
F10T-M22	-	6	208,121	0.283	1000.9	1050.2	17.5	61.6	

* 計測不良のため2本平均

式(1)~(4)に示すように、未溶接(R)の最大荷重の平 均値 *P*_{max-Ravg}に溶接部の降伏および最大耐力 *P*_{wyd}, *P*_{wtd}を 足し合わせて、供試体の終局耐力 *P*_{call}, *P*_{cal2}を計算した.

$$P_{wyd} = al \times \tau_y$$
 (1), $P_{wtd} = al \times \tau_t$ (2)

$$P_{cal1} = P_{\max-Ravg} + P_{wyd} \tag{3}$$

$$P_{cal2} = P_{\max-Ravg} + P_{wtd} \tag{4}$$

(a) R-1-A1

ここに、 $a: 実のど厚, l: 溶接長, \tau_y (= \sigma_y / \sqrt{3}): せん断$ 降伏強度, $\tau_t (= \sigma_t / \sqrt{3})$: せん断強度, $\sigma_y (=500 \text{ MPa})$: 溶 接部の耐力⁴⁾, σ_t(=570 MPa):溶接部の引張強度⁴⁾である.

載荷後の供試体を図-3, P_{max}-a 関係を図-4, P-δ_r関 係を図-5, ケース BW の P-N/N_{ini} 関係を図-6 にそれぞ れ示す.高力ボルトの軸力変化率 N/Nini は実験中の軸力 Nを表-3に示す試験前の軸力 N_{ini}で除したものである.

表-1 および図-4 に示すように, P_{max}-a 関係は比例関 係となり, RW, BW ともに最大荷重の増加が確認された. ケース RW の P_{max} は P_{cal1} , P_{cal2} より小さい. これは, 図 $-5 \text{ or } P - \delta_r$ 関係から、母板と連結板の相対変位 δ_r が溶 接により拘束され、ファスナーのせん断抵抗が小さく なるため³⁾と考えられ、 δ_r は純断面降伏荷重 P_m 以降に 増加した.

破壊モードは、ケース R, RW では母板縁端部の端抜 け+外側リベットのせん断破断が確認された.ケース BW では、端抜け破断と純断面破断の2つが確認され、 ボルトのせん断破断は生じていないことから、ファス ナー自体の強度が破壊モードに影響していた.

図-6より、載荷中の軸力低下はPm以降に大きく、母 板と連結板の相対変位 δr の増加に対応していた.純断 面破断した BW-3 の A 側では,図-6 と表-3 に示すよう に,溶接による軸力低下量が小さく,載荷中の軸力低下 挙動は内側・外側でほぼ同程度であったが,これらの結 果と破壊モードの関係については今後の検討課題と考 える.

4. まとめ

本研究では、連結板際部の母板が腐食したリベット 継手に対する,前面隅肉溶接による片側溶接補強工法 の効果を引張実験により確認した.以下に得られた結 果をまとめる.

- 1) 片側前面隅肉溶接を施したリベット継手 (RW)・高 カボルト摩擦接合継手(BW)のPmax - a 関係は比 例関係となり,どちらも同程度の最大荷重の増加 が確認された.
- 2) RW はリベットのせん断破断が生じ, BW ではボル

図-6 P - N/Nini 関係

表-3 溶接前および試験前軸力

供試 体名	N _{bw}	(溶接前	前軸力)(kN)	N _{ini} (試験前軸力)(kN)			
	Al		P1		Al		P1	
	Inner	Outer	Inner	Outer	Inner	Outer	Inner	Outer
BW-1	206.2	202.0	209.7	206.4	206.0	166.0	192.4	101.7
BW-2	203.1	203.7	208.1	210.3	193.6	73.2	202.0	157.3
BW-3	206.0	202.5	206.8	205.9	201.9	167.2	196.2	84.1

トのせん断破断は生じず、母板のみが破断した.

3) 2)より、リベット頭部腐食が軸部まで進展する等、 リベットのせん断耐力が期待できない場合 5には、 高力ボルトに取換えたうえで隅肉溶接による補強 工法を適用すると効果的である.

謝辞 本研究は、(公財)前田記念工学振興財団の助成を受けた.実験に供 した桁は熊本県宇城市より提供いただいた.ここに記して謝意を記す.

参考文献

- 1) 橋本国太郎,山口隆司,三ツ木幸子,杉浦邦征:腐食損傷を受けたリベット継 手の力学的挙動に関する検討,構造工学論文集, Vol. 56A, pp.756-765, 2021.
- 判治剛, 鷲見俊哉, 館石和雄, 清水優, 長坂康史, 竹淵敏郎: リベットと高力 2) ボルトを併用した継手の力学挙動と耐力評価,土木学会論文集 A1, Vol. 77, No.3, pp.489-508, 2021.
- 森山仁志, 否笠弘美, 秦子策, 松村政秀: 連結板際部で母板が腐食したリベッ 3) ト継手の片側溶接補強,鋼構造論文集, Vol.29, pp.58-66, 2021.
- 日本溶接工業株式会社:日鉄溶接材料ハンドブック, CT-03Cr,pp-40-41,2019. 4)
- 5) 否笠弘実, 森山仁志, 秦子策, 松村政秀: リベットの腐食程度および腐食箇所 が継手の耐荷性能に及ぼす影響,令和2年度土木学会西部支部研究発表会講演 概要集, I-014, pp.27-28, 2020.