SAR データを利用した斜面崩壊に伴う地形変化箇所の抽出とその特徴分析

九州大学工学部	学生会員	○東原	和也	九州大学大学院	正会員	三谷	泰浩
九州大学大学院	正会員	谷口	寿俊	九州大学大学院	正会員	本田	博之
九州大学大学院	学生会員	田淵	太雅	九州大学大学院	学生会員	成清	哲平

1. はじめに

広域に発生した豪雨等の被害状況の把握には,光学 衛星画像,航空写真撮影等が用いられる。しかし,これ らの方法は,悪天候や夜間の場合,撮影が不可能である。 SAR(合成開ロレーダ)衛星による観測にはマイクロ波 が利用されるため,天候や時間帯に影響されずに,地表 面の状態を観測できる¹⁾。

SAR 衛星の観測結果を用いた解析方法の1つに後方 散乱差分解析があり,斜面崩壊に伴う地形変化箇所の 抽出に利用されている。この解析方法は,地上に照射し たマイクロ波の後方散乱成分を利用するため,地表面 の条件が地形変化箇所の抽出精度に大きく影響を与え ると考えらえる。

そこで本研究では、SAR 衛星の観測データを用いた 後方散乱差分解析による地形変化箇所の抽出を2017年 7月九州北部豪雨災害で被災した地域の中から選定し た1km×1kmの領域(以下,サンプルエリア)内で行い, その抽出結果に対する地形条件の影響を明らかにする。

2. 使用するデータと崩壊地の抽出方法

使用する 2017 年7月九州北部豪雨災害前後の SAR データの詳細を表 1 に示す。ディセンディング左側観 測(以下, DL)は南下しながら左側を観測し, アセンディ ング左側観測(以下, AL)は北上しながら左側を観測す る。また, オフナディア角は衛星の鉛直直下と衛星のレ ーダ照射方向のなす角度であり, 処理レベル 2.1 とは, マイクロ波の強度情報を含むデータであることを示す。

サンプルエリアとして、上記の被災地の中から無作 為に1 km×1 km の領域を7箇所選定する(図1)。また, 表2に各サンプルエリアの傾斜角,傾斜方向に関する 面積割合を示す。

災害箇所の抽出には,解析単位を斜面ユニット(以下, SU)とした木村らの研究²⁾における後方散乱差分解析に よる抽出手法を用いる。なお,崩壊や堆積の発生した箇 所(以下,災害箇所)では後方散乱係数の差分値が大きく なることから閾値を定めて後方散乱係数の差分値が大 きい SU を崩壊地として抽出する。抽出の閾値は,サン プルエリア全体の SU のうち災害後の航空写真を用い て確認した実際の災害箇所と重なっている SU(以下,実 災害 SU)数と SAR データを用いて災害箇所として抽出 された SU(以下,抽出 SU)数が同数となるように設定す る。なお, DL は 0°~14°, 194°~360°, AL は 0°~165°, 345°~360°の傾斜方位角を持つ斜面は SAR 衛星の原理 上観測できないので,対象から除外する。

表1 使用 SAR データの詳細

図1 選定したサンプルエリア

表2 谷サン	ブルエリア	7の傾斜角.	傾斜方位角の面積割合
--------	-------	--------	------------

		傾斜	傾斜角 (%) 傾斜方位角 (%)																						
FID	0 100	10 000		accept 1		北(0-	~45°,315~	·360°)			東	Ē(45~135	°)			南	i (135~225	5°)			西	(225~315	5°)		実災害SU数
	0~10°	10~20°	20~30°	30°1/LE	0~10°	10~20°	20~30°	30°~	北合計	0~10°	10~20°	20~30°	30°~	東合計	0~10°	10~20°	20~30°	30°~	南合計	$0 \sim 10^{\circ}$	10~20°	20~30°	30°~	西合計	
0	0.0	1.4	40.6	58.0	0.0	0.1	1.4	4.6	6.1	0.0	0.1	21.4	32.6	54.1	0.0	1.0	9.6	17.6	28.2	0.0	0.0	8.3	3.3	11.6	38
1	52.6	41.3	6.1	0.0	0.0	0.8	0.0	0.0	0.8	6.0	14.2	1.4	0.0	21.5	35.4	20.9	3.3	0.0	59.6	10.7	5.5	1.8	0.0	18.1	68
2	8.7	15.9	62.6	12.8	0.2	0.0	0.5	0.0	0.6	4.0	6.7	41.9	5.5	58.1	3.4	4.1	14.0	1.5	23.0	0.3	3.8	8.3	6.0	18.3	261
3	75.1	24.9	0.0	0.0	0.5	0.0	0.0	0.0	0.5	17.7	2.6	0.0	0.0	20.3	34.2	8.9	0.0	0.0	43.1	21.7	14.4	0.0	0.0	36.1	74
4	0.2	26.1	65.7	8.0	0.0	3.1	1.2	2.0	6.2	0.0	0.5	4.2	0.2	4.8	0.0	12.1	17.1	1.4	30.6	0.1	9.8	42.4	6.0	58.3	146
5	1.1	12.1	79.5	7.3	0.0	1.7	2.3	0.0	3.9	0.0	0.7	13.5	1.2	15.4	0.8	4.6	29.9	2.6	37.9	0.3	5.2	33.8	3.5	42.8	202
6	0.4	13.9	78.5	7.2	0.0	1.5	3.0	3.1	7.6	0.1	2.0	9.8	0.0	11.9	0.1	4.2	24.0	1.8	30.1	0.1	6.3	41.7	2.3	50.4	89

3. 斜面崩壊に伴う地形変化箇所の抽出結果

表3にサンプルエリア全体のDLとALの実災害SU 数と本研究で災害箇所の抽出に使用した後方散乱差分 の閾値を示す。また、表4にサンプルエリアごとの抽出 結果を示す。観測不能領域の設定により評価できない 領域を減らすために、ALとDLのデータを組み合わせ た抽出結果も算出する。ここで、正答率とは抽出SUの うち、実災害SUであった割合であり、検出率とは実災 害SUのうち、抽出できた災害SUの割合である。災害 発生時を想定した場合、ある程度の正答率を保ったう えで、災害箇所を漏れなく抽出することが重要である ため検出率を重視して正答率と検出率(以下、抽出精度) の評価を行うための基準を、正答率は50%より高く、 検出率は被災箇所を75%以上と設定する。その結果、 ALとDLを組み合わせた抽出精度がFID1、2、3、5で 高く、FID0、4、6で低くなった。

4. サンプルエリアごとの抽出結果についての考察

各サンプルエリアの抽出精度に3つの条件が影響を 与えることが明らかになった。まず、抽出精度の高い FID1,3では傾斜角の割合から,0~10°の緩傾斜である 斜面がそれぞれ 52.6%, 75.1%含まれており, 抽出精度 が高い。一方,抽出精度の低い FID0 に関しては傾斜角 の割合から, 傾斜角が 30°以上の急傾斜の斜面が 58.0% 含まれており,抽出精度が低い。この結果,傾斜角が 10°以下の斜面が半分以上を占める領域では抽出精度 が高く、30°以上の急斜面が半分以上を占める領域で は、抽出精度が低くなると考えられる。次に、FID2,4 は東向き斜面または西向き斜面を多く含むサンプルエ リアであり,正答率,抽出率ともに十分に高くなったこ とから, 西向き斜面および東向き斜面は抽出精度の向 上に寄与していると考えることができる。南向き斜面 は FID1 に多く含まれるが、緩傾斜の斜面の割合が大き く平地に近いマイクロ波の散乱現象が起きることで, 傾斜方位角の影響は小さく,北向き斜面は,サンプルエ リアの選定時に斜面数が少ない上に、そのほとんどが 観測不能領域として抽出の対象外とされることから、 斜面として抽出精度への影響を考えるのは困難である。 また,南向き斜面および北向き斜面に関しては,ある程 度大きな傾斜角の SU を十分な数を有したサンプルエ リアにおいて評価を行う必要がある。最後に, FID2, 4, 5,6は地形条件や土地利用に関する差は小さいが FID2,

表3 実災害 SU 数と抽出に使用した閾値

А	L	DL						
実災害 SU数	閾値(dB)	実災害SU数	閾値(dB)					
496	2.40	374	2.21					

表 4 サンプルエリアごとの災害箇所の抽出結果

	組み行	合わせ	А	L	D	L	中 /// 中 ox x半	抽出SU数	
FID	正答率(%)	検出率(%)	正答率(%)	検出率(%)	正答率(%)	検出率(%)	実災害SU数		
0	30.4	44.7	19.4	85.7	44.0	35.5	38	56	
1	52.2	86.8	52.8	86.4	51.2	87.5	68	113	
2	93.2	79.3	92.9	82.0	93.6	76.7	261	222	
3	56.0	87.8	58.3	87.5	52.3	88.5	74	100	
4	93.0	63.7	90.9	61.9	100.0	69.7	146	116	
5	99.4	79.2	98.9	77.8	100.0	81.2	202	161	
6	71.2	52.8	73.2	45.5	68.0	73.9	89	66	

5 で抽出精度は高く, FID4, 6 で抽出精度は低いという 違いが見られる。そのため, サンプルエリアごとの実災 害 SU 数と抽出 SU 数に着目すると FID2, FID5 でそれ ぞれの SU 数が多く FID4, FID6 でそれぞれの SU 数が 少なくなっていることが分かる。よって,同様な地形条 件,土地利用をもつサンプルエリア同士の抽出精度の 差は,サンプルエリア間の実災害 SU 数と抽出 SU 数の 差によるものだと考えられる。つまり,実災害 SU 数と 抽出 SU 数がそれぞれ等しくなるように閾値を設定し ているため精度的に劣ったと考えられる。

5. おわりに

本研究では、後方散乱差分解析を用いてサンプルエ リアごとの被災箇所の抽出を行い、抽出結果に対する 地形条件の影響を明らかにした。結果として、傾斜角が 10°以下の緩傾斜地で抽出精度が高く、傾斜角が 30° 以上の急斜面地で抽出精度が低くなった。FID2, 4, 5, 6の結果からサンプルエリア間の実災害 SU数および抽 出 SU 数の差が抽出精度に影響していることが明らか になった。また、傾斜方位角については、西向き斜面、 または東向き斜面を多く含むエリアの観測精度が高く なった。以上より、抽出精度の向上に際しては、地形条 件を考慮した閾値の設定方法が重要であると考えられ る。

■研究で使用した PALSAR-2 データは、国立研究開発 法人宇宙航空研究開発機構の大規模災害 WG より提供 されたものである。この場を借りて感謝申し上げます。 <参考文献>

- 山下久美子,神山嬢子,鈴木大和,野呂智之,杉本 惇,柴山卓史,鵜殿俊昭:二時期 SAR 強度画像を 用いた土砂移動箇所判読精度の検証,砂防学会誌, Vol.71, No.6, pp.21-27, 2019.
- 木村智,三谷泰浩,岡島裕樹,田露,田淵太雅: PALSAR-2 強度データを用いた平成 29 年 7 月九州 北部豪雨における斜面崩壊の抽出,日本リモート センシング学会学術講演論文集,第 67 回, pp.47-50, 2019.