土壌水分シミュレーションによる砂質土における キャピラリーバリアの保水効率化の検討

九州大学大学院	学生会員(⊃伊東雄一朗	九州大学大学院	正会員	古川全太郎
九州大学大学院	フェロー会員	安福規之	九州大学大学院	正会員	Adel ALOWAISY
九州大学大学院	正会員	石藏良平			

1. まえがき

近年の地球温暖化をはじめとした地球環境問題は依 然として深刻な状況にあり、その中でも砂漠化問題は喫 緊の課題となっている。文献 1)によると、モンゴル Bogd 村では約 30 年前に地元の研究機関がカンゾウ栽培を実 験的に行っていた土地が、干ばつなどによって現在は荒 廃していることが報告されている。さらに、この地域は 水が少ない環境であり、農業生産を行う場合、少ない水 を有効利用して灌漑を行うことが求められている。

このことをふまえて,著者らは現地の材料やバイオ マスなどを活用して乾燥地の灌漑システムを効率化で きる技術開発に取り組んでいる²⁾が,これまでの調査・ 現地実験を通して,灌漑水が土中で保持されず,下方に 浸透する水のロスの発生や乾燥地などの砂質土で植物 に必要な水分量が明確でないことが課題となっている。

これらの課題に対して,著者らは浸透量の削減のため に現地の地盤内にキャピラリーバリア(以後, CBと称 する)を適用し,地盤の保水性を植物の成長が可能な範 囲に向上・調整することを検討している。CBは上層と 下層の地盤材料の相対的な保水性の違いにより,境界面 の上部内で浸潤水が補足され集積される機能である³⁾。

この機能により,効率の良い保水システムが構築でき れば,灌水量やその頻度を削減し,水資源をはじめとし た限られた資源と労力でその土地の植生生長に寄与す ることができ,「持続可能な土地劣化抑制技術」の一端 を担うことが期待できる。

本報では、乾燥地における砂質土での灌漑を想定し、 CBによる保水性の最適化の効果を検証するため土壌水 分シミュレーションを用いて、適切な下層設置厚さに関 する分析を行った。

2. 試料および実験内容

(1)試料および不飽和浸透の特性値

実験には、硅砂4号(以後,K-4と称する)および7 号(K-7)の2試料を使用した。表-1には、2試料に対 して文献4)に基づいて実施した CPM 法から得られた水 分特性曲線(図-1)を van Genuchten⁵⁾により近似した⁶⁾ パラメータを示す。また、図-2には、それらの粒径加 積曲線を示す。なお、参考のためモンゴルのカンゾウ自 生地において、深さ 0cm 地点で採取した現地試料の結 果¹⁾も併記した。

(2)実験条件および解析モデル

図-3 は、本研究で設定した解析モデルとその実験条件を示す。図の上層と最下層(Material 1)はK-7、下層(Material 2)はK-4を使用した。これらの層厚は図中の表に示す上層厚さLと下層厚さXの条件で与えた。

図-1 試料の水分特性曲線 (SWCC)

表-1 不飽和浸透の特性値

Materials	Parameters	Value (Wetting)
K-4	飽和体積含水率 θ_s	0.425
	残留体積含水率 θ_r	2.377E-07
	無次元パラメーター n	2.552
	サクションの逆数の次元を持つ スケーリングパラメーター α (cm ⁻¹)	0.152
K-7	飽和体積含水率 θ_s	0.390
	残留体積含水率 θ_r	0.036
	無次元パラメーター n	3.393
	サクションの逆数の次元を持つ スケーリングパラメーター α (cm ⁻¹)	0.029

解析ツールは 2D/3D-HYDRUS を使用した。境界条件 は上端(地表面)の中心点を給水点とし,それ以外の点 は空気との自由境界面,両側面は不透水,下端は自由排 水とした。

解析期間は10日,初期条件は図-1のK-7の&に基づき,初期体積含水率&を0.037(そのときのサクション ψ_i =11.19kPa)とし,給水条件はモンゴルの栽培サイト で試験的に行われている点滴灌漑を想定し,0日目(実 験開始日)と0日目およびその開始から3日目に,設定 した上端の給水点が0日目では37分,3日目では30分 間飽和度が100%になり,それ以外の時間帯は&近く(乾 燥状態)になる2条件とした。可能蒸発散量(PET)は, モンゴル乾燥地で観測されたそれのうち,最も小さい大 きさであった0.084cm/dayとし,地表面の最小許容圧力 水頭の絶対値は50000cm⁷に設定した。

3.結果および考察

図-4は、サクションと深さとの関係を示す。図では、 1回のみを含めた2回の給水終了後の4日目と実験開始 から1週間以上経過した10日目での結果を記している。

CBを適用することにより、上層内のサクションを小 さくすることができるが、図ではいずれの給水・層厚条 件においてもサクションが易有効水分(約3kPa~約 100kPa)内であることがわかる。

この中でも、CBを適用した場合、サクションが4kPa 近くまで小さくなり、空隙内に自由水が存在し、水分が 下方へ浸透せず上層内に留まっていることになる。

図ですべての条件で易有効水分内であることが満足 されたが, K-7 の SWCC を考えると, サクション値の 8kPa 付近は, 0.1 付近の体積含水率に相当する。

図-5 は、体積含水率と深さとの関係を示す。図より、 上層では CB を適用した場合、いずれの給水回数でも CBを適用しない場合に比べて体積含水率が数倍に大き くなっていることがわかる。

この結果から,栽培サイトでの点滴灌漑は,週に2回 潅水を行えば植物の成長上適している水分状態になる ことがわかる。

図-6 は、層厚比と体積含水率との関係を示す。図より、CBを適用した場合、層厚比が 0.1 以上でいずれの日時でも体積含水率がほぼ一定である。これより、点滴 灌漑の場合、一定の下層厚さ以上で CB による保水効果 に及ぼす影響は小さいと考えられ、X/L=0.1 程度になる ような厚さで下層を設置すればよいことが示唆された。

4. まとめ

本報で得られた知見を以下に列挙する。

- サクションは、キャピラリーバリア(CB)の適用の 有無に関わらず易有効水分内であった。
- ② 体積含水率では、上層のそれが 0.1 よりも大きくなり、砂質土としての CB の効果が確認された。
- ③ 点滴灌漑で CB を適用する場合, X/L= 0.1 程度にな るような厚さで下層を設置すればよい。

参考文献

- 古川全太郎,安福規之,大嶺聖,丸居篤:砂漠化対策に向けたモンゴル乾燥地における薬用植物「カンゾウ」自生地の地盤環境特性,土木学会論文集 C(地圏工学),第69巻, 第4号, pp.417-431, 2013.
- Furukawa Z., Yasufuku N., Omine K., Marui A.: Evaluation of survival rate of Licorice (Glycyrrhiza uralensis Fisch) in semi-arid region by statistical analysis, Lecture Notes in Civil Engineering, Volume 62, No.1, pp.759-766, 2019.
- 3) 森井俊廣,小林薫,松元和伸,藤巻晴行,井上光弘,竹下 祐二:土のキャピラリーバリアの社会実装を考える,平成 28 年度不飽和土研究会研究発表論文集, pp.75-82, 2016.
- 4) 安福規之, Adel M. Alowaisy, 石藏良平, 畠山正則, 京野 修:連続加圧式の保水試験装置による不飽和浸透特性の

図-5 体積含水率と深さとの関係

図-6 層厚比と体積含水率との関係(OP:200mm)

- 算定, 地盤工学会誌, 第 68 巻, 第 7 号, pp.6-10, 2020.7. 5) M. Th. van Genuchten: A Closed - form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils, Soil Sci. Soc. Am. J., Vol.44, pp.892-898, 1980.
- Seki K. : SWRC fit a nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure, Hydrol. Earth Syst. Sci. Disc., 4, pp.407-437, 2007.
- D. Rassam, J. Šimůnek, M. Th. van Genuchten : Modelling Variably Saturated Flow with HYDRUS-2D, II.4, 2003.