鋼材の局部伸びを考慮した真応カーひずみ関係の簡易的なモデル化の検討

九州工業大学 学生会員〇大塚 貴広

九州工業大学 正会員 高井 俊和

1. はじめに

鋼材の大変形が生じる FEM 解析を実施するには, 断面積の変化が無視できないため真応カーひずみ関 係を用いる必要がある.材料引張試験では一般に公 称応カーひずみ関係が得られるが,引張強さ以降は ネッキングが生じるため真応カーひずみ関係に変換 するには煩雑さを伴う.ミルシートから真応カーひ ずみ関係がモデル化できれば簡便であるが,ミルシ ートに示される降伏点,引張強さ,伸び(,絞り)以 外は何らかの方法で補完する必要がある.本検討で は簡便に真応カーひずみ関係をモデル化する方法を 検討し,材料試験の再現解析によりモデル化の精度 を確認した.

2. 応カーひずみのモデル化

材料試験は SM490Y の板厚 28 mm の鋼板から作成 した 4 号試験片を用いた. 円筒部の直径が 14 mm, 標点間が 50 mm である. ミルシートによる公称の降 伏点は 416N/mm², 引張強さは 542N/mm² である. 材 料試験結果とミルシートからモデル化した応カーひ ずみ関係を表 1 にまとめる. 表の値は真応力, 真ひ ずみであり, 公称応力, 公称ひずみから変換した. 表 内の赤数字は補完した値である.

補完にあたり,文献[1][2][3][4]に示されている 材料特性をもとに,特性値間の関係式を作成した. 一様伸びと降伏比の関係を図1に,破断応力と引張強 さの関係を図2に,絞りと降伏点の関係を図3に示 す. 横軸は文献や,相関係数を勘案して最も相関性が あると思われる特性値を選択した.降伏ひずみは,降 伏点をヤング率200,000 N/mm²で割り求めた.破断 伸びは,塑性変形の非圧縮性($A_0L_0=AL$)を考慮し, $\epsilon_r=\ln(L/L_0)=\ln(A_0/A)$ で求めた.なお, A_0/A は絞り φ の 補完値に基づき代入した.

図4に表1にまとめた真応カーひずみ関係を示す. ミルシートの値を補完したケースも含め,どのモデ ル化も大きな差はなかった.局所伸びを考慮したた め,破断応力は1,000 N/mm²超え,破断ひずみは100% を超えた. 表1 応力-ひずみのモデル化

材料試験結果		材料試験結果に基づいた			
		マルチ リニア	トリ リニア	降伏点, 引張強さ, 破断伸び	ミル シート
解析ケース		а	b	с	d
降伏点σ _y (N/mm	1 ²)	427.7			416.9
降伏伸びε _y (9	6)	0.21		0.21	0.21
引張強さot (N/mm	1 ²)	629.2			616.8
ー様伸びε _t (9	6)	14.5		12.4	12.9
破断応力σ _f (N/mm	1 ²)	1105.8		1165.9	1146.5
破断伸びε _f (9	6)	126.4		121.8	121.7
絞りφ (9	6)	71.8		70.4	70.4

図1 一様伸び-降伏比関係

図4 局部伸びを考慮した真応力-真ひずみ関係

3. 解析方法

解析プログラムは Abaqus Standard v6.13 を用いた. 図5のように対称性を考慮した 1/8 モデルとし,要素長が2mm程度の均一とした8節点低減積分ソリッド要素を用いた.また,ネッキングを生じさせるため対称面の半径を0.01mm縮小した.応力-ひずみ関係は図4を用いた.幾何学的非線形を考慮した.

4. 解析結果

図6に材料試験の破断伸び(公称)に達した時点の変形と応力分布の一例を示す.いずれのケースと もネッキングが再現されていることを確認した.

図7に材料試験と解析結果から得られた公称応力 ーひずみ関係を示す.いずれの解析ケースとも似た 応カーひずみ関係が得られた.そのため,簡便なミル シートの値を補完した応力ーひずみ関係でも一定の 精度が得られる結果となった.材料試験結果と比較 すると,引張強さと破断の中間程度までは,近い結果 が得られたが,破断が生じる付近では解析の方がや や高くなった.

図8に材料試験結果に対する解析で得られた降伏 点,引張強さ,破断時点の応力とひずみの誤差を示 す.降伏点,引張強さの誤差は3%程度,降伏ひずみ, 一様伸びの誤差は10%前後となり,破断応力の誤差 は30%程度と大きくなった.

5. まとめ

本検討では、ミルシートの値を補完して鋼材の真 応カーひずみ関係のモデル化を提案し、FEM 解析を 実施し材料試験結果との比較でその精度を確認した. その結果、公称応カーひずみ関係では引張強さを越 えた辺りまでは、材料試験とおおむね近い結果が得 られた.

参考文献

- [1]岩田 善裕,石原 直,向井 昭義,西山 功,青木 博文:鋼材の素材引張試験における一様伸びと破 断伸びの関係,日本建築学会構造系論文集,第78
 巻,第683 号,カテゴリーⅡ,pp.223-232,2013.
- [2] 土木学会・本州四国連絡橋鋼上部構造研究小委員 会・鋼材分科会:鋼上部構造用鋼板の所要性能, 1973.
- [3] 土田 紀之, 井上 忠信, 榎並 啓太郎: 様々な金属 材料を用いた断続引張試験と Bridman の式による 断続直前までの真の応力-ひずみ関係の推算,日

図6 ミルシートのケースの破断時の応力分布

図7 材料試験と解析で得られた公称応カーひずみ

図8 実験結果と解析結果の誤差

本金属学会誌, 第 76 巻, 第 10 号, pp.579-586, 2012.

[4] 国土交通省 国土技術政策総合研究所,日本鉄鋼 連盟:鋼材の破断伸びに及ぼす試験片形状の影響, 国土技術政策総合研究所資料,第 662 号, 2011.