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1. Introduction 

Recently, amounts of infrastructures are approaching their designed life, thus the number of deteriorated concrete structures 

is increasing rapidly. In order to apply the proper maintenances, inspections are conducted regularly on concrete structures. 

The regular inspection is based on visual inspection, and non-destructive inspections for more detailed information on the 

interior condition. Among non-destructive inspections, hammering sound test using rotary hammer is one of the most popular 

methods because of its feasibility and low-cost advantages. However, there are several disadvantages of the rotary hammering 

test. It is highly dependent on the inspector’s experiences of deterioration detection, moreover, the data processing for analysis 

is considered to be not efficient enough. On the other hand, application of artificial intelligence on the maintenance of civil 

engineering structures is gathering the spotlight. In this study, the objective is to develop an accurate and efficient evaluation 

method of the concrete structure soundness based on hammering sound test data using the convolutional neural network (CNN).  

2. Classification Model 

2.1 Experimental Data and Data Processing 

Experimental data from rotary hammering test conducted on mortar cuboid 

with artificial deterioration is used as the learning data to feed the classification 

model. Details of the experiment is explained as shown in Fig.1, based on 

10×10×40 cm mortar cuboid specimen, artificial deterioration using styrofoam 

was used to simulate deterioration inside concrete structure. There were four 

different sizes of artificial deteriorations, 2×3×5 cm, 2×5×10 cm, 2×5×15 cm, 

2×7×20 cm. The acoustic data was recorded with IC recorder which had a 

sampling frequency of 44.1 kHz.  

Image of spectrogram from acoustic data, as shown in Fig.2, will be used as 

the learning data. In a spectrogram, there are three key features of acoustic data. 

The first feature is the maximum amplitude, it tends to be obviously greater of a 

deteriorated structure than of a soundness one. The second feature is the time 

duration which deteriorated structures are also greater than normal ones. Last key 

feature is the distinct pattern of frequency characteristic which is gained from 

applying Fourier transform. By using the spectrogram, all these three features can 

be used as the references to for classification. 

2.2 CNN Classification Model 

The system of classification using convolutional neuron network is 

as shown the flow chart Fig.3. Input data contains spectrogram 

generated from the previous procedure, and classification of each 

spectrogram data as labels. Input data was fed into the convolutional 

neuron network for deep learning process, it output prediction on 

classification of the input data. Base on the input labels and the output 

from classification model, bias and weights are updated by the 

optimizer. As the learning proceeds, loss function decreases, while the 

accuracy of prediction increases respectively, as shown in Fig.4, and 

both tends to be stable. Finally, data that is not used in the learning 

process will be feed into the classifier model to predict its deterioration 

class. In this study, 80% of the data prepared are used as learning data, 

the left 20% are used as validation data. The classifier is tested by validation 

data, and the final accuracy of validation is 91.3%. 

 

Fig.1 Motar Cuboid 

Fig.2 Spectrogram  

 

Fig.3 CNN Classification Model 

Fig.4 Prediction Accuracy 
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3. Validation 

3.1 Validation on Inspection Data 

The CNN model was validated with actual inspection data. The inspection 

data used in the validation was from rotary hammering inspections of 4 

bridges A~D. For each bridge, rotary hammering test was conducted on two 

intact areas, and two deteriorated areas where the reflected sounds were 

obviously different from the intact area while the interior conditions were not 

clarified. Since the interior conditions were not clarified, it is not feasible to 

classify the deteriorations’ sizes. Thus, in this validation, instead of the 

deteriorations’ sizes, the labels were considered as the level of deteriorations, 

where level 1 stands for normal, and level 2~5 stands for the deterioration size 

of 2×3×5 cm,2×5×10 cm,2×5×15 cm,2×7×20 cm respectively. Inspection 

data was converted into spectrogram and then fed into the CNN model for 

soundness prediction. The results of the predictions were as shown in Table.1. 

The deteriorated levels of normal areas were correctly predicted as level 1 in 

5 inspection points out of a total number of 8. At the same time, for the 

deteriorated areas, except for one inspection point, the predictions of 

deteriorated levels of others were all resulted in at least level 2 in average. 

From this result, it is reasonable to conclude the feasibility of the CNN model 

on soundness evaluation. 

3.2 Comparison with Present Method  

Furthermore, the results were compared to consequences based on a 

previous study which is to construct a three-dimensional diagram with 

amplitude ratio, time duration and frequency of hammering sound test data 

for further validation. As shown in Fig.5, the present method uses the distance 

from the origin point on the diagram to represent the deterioration level. This 

method is considered to be able to represent the interior condition of concrete 

structures. Same data set was used in the evaluation by the present method, 

the comparison of results from the CNN model and from the present method 

were as shown in Table.2 and Table 3 seperated by the soundness of bridges. 

First, regarding the normal structures. 5 of 8 of the normal structures were 

predicted correctly by the CNN classification model. However, there are 

three of them predicted as over deteriorated level 2. Comparing to the 3-d 

diagram method, the distance from origin point of those bridges are also 

higher than the others. It can be considered that those three points could be 

closer to be deteriorated. Next, regarding the deteriorated structures. All 8 

points were predicted to be higher than deteriorated level 1. In comparison 

with the 3-d diagram, the distances are all obviously greater than that of the 

normal structures, which means it can be said that the model successfully 

detected all deteriorated structures. Moreover, the predicted deteriorated level 

varies from 1.4 to 4.3 in response to distinct value of distance on the 3-d 

diagram. 

4. Conclusion 

In this study, an optimal hammering sound test soundness investigation of concrete structure applying convolutional neuron network was 

discussed. Firstly, rotary hammering test data was processed to spectrogram and then fed into a CNN model for training. Then the trained CNN 

model, a classifier of concrete structure soundness, was validated using experimental data. At last, the CNN model was additionally testes with 

inspection data can compared to previous investigation method. Through this study, the following conclusions could be summarized. 

1) The prediction accuracy of the CNN model based on spectrogram of acoustic signal from hammering sound test resulted in 91.3%, 

which is safe to say that spectrogram could be an appropriate input data for the machine learning process. 

2) The prediction of deterioration level by the CNN model showed similar trends as the present investigation method, so the CNN model 

could be used for actual bridge inspections. 

Table.1 Predicted Deteriorated Level 

 A B C D 

Normal 1 3.4 2.7 1.0 1.0 

Normal 2 1.0 3.4 1.0 1.0 

Deteriorated 1 3.1 2.0 3.5 2.6 

Deteriorated 1 4.3 3.3 2.3 1.4 

 

Fig.5 Present investigation method 

 

Table.2 Results Comparison - Normal 

Location 
CNN Model 3-D Diagram 

Rank Level Rank Distance 

B2-N 1 3.4 1 2.8 

A1-N 1 3.4 3 1.8 

B1-N 3 2.7 2 2.4 

D1-N 4 1.0 4 1.5 

D2-N 4 1.0 5 1.5 

C1-N 4 1.0 6 1.5 

C2-N 4 1.0 7 1.4 

A2-N 4 1.0 8 1.3 

Table.3 Results Comparison - Deterioorated 

Location 
CNN Model 3-D Diagram 

Rank Level Rank Distance 

A2-D 1 4.3 1 39.7 

C1-D 2 3.5 6 18.9 

B2-D 3 3.3 5 21.3 

A1-D 4 3.1 3 25.5 

D1-D 5 2.6 2 26.8 

C2-D 6 2.3 4 22.4 

B1-D 7 2.0 7 9.6 

D2-D 8 1.4 8 8.1 
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