大規模アンサンブル気候予測データベースを用いた 周防灘海域における高潮の将来変化に関する研究

九州大学	学生会員	髙良 匠
九州大学		井手喜彦
九州大学	正会員	山城 賢
九州大学	フェロー	橋本典明

1. はじめに

日本は国土の大部分が山地であり、多くの都市機能は低平地である沿岸域に 集中している.このため、都市部は台風による高潮の被害を受けやすく、過去、 多くの人や建物が被害を受けてきた. 瀬戸内海西部に位置する周防灘も 1999 年 18 号台風や 2004 年 16, 18 号台風などで高潮災害が生じており高潮の危険性が 高い海域である.また,地球温暖化に伴う海面上昇や台風の強大化により,将 来的に高潮災害の危険性は高まると考えられる.現在,気温や降水量などの気 象場については、地球温暖化対策に資するアンサンブル気候予測データベース (d4PDF)などを利用することで,温暖化後の将来変化を統計的に解析することが 可能である.しかし、高潮のような海象場に関しては、大規模なデータベース がなく、統計的に解析した例は少ない.既往の研究として、岩部ら¹⁾は d4PDF の台風に対して、ニューラルネットワークを用いて高潮偏差の長期評価を行っ た.森ら²⁾は d4PDF から抽出した少数の台風に対して,力学モデルを用いて高 潮偏差を計算し、高潮の長期評価を行った.しかし、d4PDFの台風に対して力 学モデルを使用して大規模に高潮を計算し、統計的に評価した例はない.以上 のことから、本研究では、d4PDFから抽出した台風に対して海洋流動モデルを 用いて高潮計算し,周防灘周辺海域における高潮の将来変化を統計的に評価した.

2. 使用したデータ

高潮シミュレーションには、外力として風場と気圧場を与える必要がある.本研究 では、外力として d4PDF を使用した. d4PDF は、高解像度大気モデルを使用した高 精度モデル実験出力データであり、日本周辺域をカバーする領域実験では、水平空間 解像度は 20km である. 領域実験には、1951~2011 年の気候で計算された過去実験 と将来4度上昇した気候で計算された将来実験があり、それぞれ3,000 年分と5,400 年分のアンサンブルデータを有する. 本研究では、過去実験と将来実験から図-1 に 示す領域1を通過する台風を抽出した. また、抽出した台風が図-1 に示す領域2 に 滞在しているときの風場と気圧場を取得し、それを海洋流動モデルに外力として与 え高潮偏差を計算した.

3. 高潮シミュレーション

高潮シミュレーションには海洋流動モデル FVCOM (Finite Volume Community Ocean Model)³⁾を用いた. FVCOM は、水平方向に非構造格子系を、鉛直方向に σ座 標系を採用し、三次元有限体積法を用いた海洋流動モデルである.非構造格子を用い ることにより、構造格子では表現が難しい複雑な海岸線を詳細に表現でき、高精度な 計算が可能である. 図-2 に計算領域を示す.計算領域は園田ら⁴⁾の研究で周防灘の高 潮を計算する際に最適と判断された領域とした.図-2 中の表に主な計算条件を示す.

図-1 領域図

図-2 計算領域および計算条件

凶-3 計算値と観側値の比較 (下関)

表-1 再現性の検証に用いた 台風

台風	周防灘への最接近日
2003年4号台風	2003年5月31日
2003年6号台風	2003年6月19日
2003年10号台風	2003年8月8日
2003年14号台風	2003年9月12日
2004年4号台風	2004年6月11日
2004年6号台風	2004年6月21日
2004年10号台風	2004年7月31日
2004年11号台風	2004年8月4日
2004年15号台風	2004年8月19日
2004年16号台風	2004年8月30日
2004年18号台風	2004年9月7日
2004年21号台風	2004年9月29日
2004年23号台風	2004年10月20日
2005年14号台風	2005年9月6日

4. 再現性の検証

使用した FVCOM の精度を確認するため,周防灘に接近した 14 個の台風(表-1)について高潮計算を実施した. FVCOM には、外力としてメソ数値予報モデル GPV の風場と気圧場を与えた.下関(図-2 赤点)における最大高潮 偏差について、計算値と観測値の比較を図-3 に示す.なお、潮位偏差には高潮偏差だけでなく、その他の要因によ る長期変動も含まれているため、潮位偏差の1か月移動平均を求め、観測値からその分を引くことで補正している. 図-3 より、極端に過小評価されている台風(2004 年 16 号台風)が一つあったが、この台風は周防灘の真上を通過 しており、風向・風速が急激に変わったため、高潮偏差の誤差が大きくなったと考えられる.また、高潮偏差が小 さい台風の場合、計算値がわずかに過小評価される傾向があるものの、大きな高潮偏差に関しては、精度よく再現 できており、本研究で使用するモデルには十分な精度があることを確認した.

5. 周防灘海域の将来の高潮に関する検討

過去実験および将来実験からそれぞれ18メンバ(1,080年間)を対象とし、周防灘に接近した台風を抽出した. 抽出された台風は過去実験から441個,将来実験から259個であり,既往研究などで一般的に述べられているよう に将来的に台風の個数は減少する傾向が周防灘でも確認された.これらの台風について高潮計算を実施した.

5.1 最大高潮偏差の平面分布

図-4 に過去実験の全計算ケースの結果での,最大高潮偏差の平面分 布を示す.最大高潮偏差は周防灘湾口部では,約0.6mであったが,湾 の奥に行くほど大きくなり,長府では約1.8mとなった.図-5に将来実 験と過去実験の最大高潮偏差の差を示す.周防灘においてはほぼ全域 で最大高潮偏差が大きくなることがわかった.その差は,湾奥部ほど大 きくなっており,長府では最大高潮偏差が約1.3m高くなることがわかった.

5.2 最大高潮偏差の大きさごとの台風頻度分布

過去実験および将来実験において、宇部と苅田の最大高潮偏差の出 現頻度を図-6に示す.過去実験では、1.2m以上の高潮を起こす台風は ほとんど出現していないが、将来実験では、いくらか出現しており、大 きな高潮を起こす台風が増加することがわかった.今後は高潮の危険 性がさらに高まる可能性が示された.

6. おわりに

周防灘における将来の高潮リスクの検討に資するため,d4PDF から抽出し た台風による高潮偏差を海洋流動モデル FVCOM を用いて計算し統計的な解 析を行った.その結果,将来的に,周防灘湾奥部において高潮偏差が特に大 きくなることや,大きな高潮を起こす台風が増加する傾向があり,高潮の危 険性がさらに高まる可能性があることが明らかとなった.

参考文献

- 岩部ら(2019):確率台風モデル,高潮モデルおよびニューラルネットワークを用いた高潮偏差の長期評価,土木学会論文集 B2(海岸工学), Vol.72, No.2, I_1465-I_1470
- 森ら(2016):全球 60kmAGCM を用いた大規模アンサンブル気候予測実験とこれを用いた高 潮長期評価、土木学会論文集 B2(海岸工学), Vol.72, No.2, I_1471-I_1476
- Chen et al. (2003): An Unstructured Grid, Finite-Volume, Three-Dimensional, Primitive Equations Ocean Model: Application to Coastal Ocean and Estuaries, Journal of Atmospheric and Oceanic Technology Vol.20, pp159-186
- 4) 園田ら(2019):周防灘における将来の高潮に関する研究、土木学会論文集 B2(海岸工学), Vol.71, No.2, I_1183-I_1188

図-4 過去実験の最大高潮偏差の分布

