開水路側壁に設置した遮蔽板の高さがオイカワの休憩特性に及ぼす影響

九州工業大学大学院 学生会員 〇橋本将直

九州工業大学大学院 正会員 鬼束幸樹

1. はじめに

河川に横断構造物が設置されると魚類の縦断移動が困難 になるため,魚道が併設される.魚は遊泳速度が体長倍流速 で2~4(1/s)の維持速度を越えると普通筋が使われ疲労が蓄 積されるため¹⁾,しばしば休憩が必要となる.そのため,ア イスハーバー型魚道やデニール式魚道など,魚の休憩場所を 確保した魚道が提案されている.水制やそれに類する魚の休 憩場所の利用形態に関する研究がいくつか存在するが,遮蔽 物の高さを系統的に変化させた時の流況変化が,魚の休憩行 動に及ぼす影響に関する研究はほとんど存在しない.本研究 では,開水路側壁に設置した遮蔽板の高さ変化がオイカワの 休憩特性に及ぼす影響について検討した.

2. 実験装置および実験条件

図-1 に示す水路長 3.0m, 幅 B=0.6m, 高さ 0.3m の開水路 を実験に用いた. 流下方向に x 軸, x 軸に直角上向きに y 軸, 横断方向に z 軸をとる. 開水路始端から 0.3m より流下方向 に L=2.4m の範囲において,水路の右岸に,厚さ 0.01m,横 断方向幅 B_t = 0.15mの遮蔽板を流下方向の間隔 d_x = 0.5mで 設置した. 遮蔽板を配置した領域を spur dike area, spur dike area の上流側および下流側をそれぞれ upstream area, downstream area と命名した. 表-1 に実験条件を示す. 設置し た遮蔽板の高さ H_s をオイカワの平均体高 $\overline{B_t}$ で除した体高倍

遮蔽板高さ H_s/B_H を1.5, 3, 4.5 および6倍の4通りに変化させると共に体長倍流速 U_m/B_L を1, 3, 5 および7(1/s) の4通りに変化させた合計 16 ケースの実験を行った.全ケースにおいて水深はほぼ h=0.12m であり,遮蔽板は冠水状態であった.平均体長 B_L =60mm,平均体高 B_H =15mm のオイカワ 240 尾を用意し、実験結果に偏りがでないように順番に使用した.水路下流端から 0.35m 上流の水路中央に直径 0.1m の円形金網を設置し、1 尾のオイカワを挿入した.挿入後 10s 間馴致した後に金網を取り上げ,水路上部に設置した画素数 1440×1080,撮影速度 30fps のビデオカメラで spur dike area を 90s 間撮影した.上記の実験を各ケースで 15 回,合計 240 回行い,撮影後, 0.5s ごとの魚の遊泳位置を解析した.x, y, z 軸方向に 55, 5, 1 点のメッシュで構成される点のうち,体高倍遮蔽板高さ H_s/B_H が 1.5, 3, 4.5, 6 において遮蔽板が存在する点を除いたそれぞれ合計 271, 267, 263, 259 点において,電磁流速計を用いて流速 3 成分を 0.05s 間隔で 25.6s 計測した.計測後, x, y, z 軸方向の時間平均流速 U, V, W から合成流速 V_v = $\sqrt{U^2 + V^2 + W^2}$ を算出した.

3. 実験結果および考察

図-2 に体長倍流速 U_m/B_L が最大のケースの z=0.075m における鉛直断面内の 3 次元合成流速 V_v (m/s)をベクトル 表示した.いずれの遮蔽板高さ H_s/B_H においても,遮蔽板を流下方向に投影した領域で流速が低下している.また, 遮蔽板高さの増加に伴い,遮蔽板背後の低流速域が増加した.

upstream areaに到達した尾数 n_r を実験に用いたオイカワの尾数N=15で除した値を到達率 n_r/N と定義する. 図 -3に体長倍流速 U_m/B_L とオイカワの到達率 n_r/N との関係を遮蔽板高さ H_s/B_H のケース別に示した. いずれの遮蔽 板高さにおいても体長倍流速の変化による到達率の顕著な変化は確認されない. ケース間で比較すると,遮蔽板 高さの増加に伴い到達率が増加傾向にある. これは図-2より,遮蔽板高さの増加に伴い遮蔽板背後の低流速域が 増加し、オイカワが休憩しながら遊泳できるためと考えられる. 以上より、体長倍流速の変化に関わらず、遮蔽 板高さが増加するとオイカワの到達率 n_r/N が増加することが判明した.

遮蔽板を流下方向に投影したときに遮蔽板が存在する領域にオイカワが遊泳する場合を遮蔽板を利用したと定義した.遮蔽板を利用したオイカワの尾数 n_s を0.5sごとにカウントして時間平均尾数 $\overline{n_s}$ を算出し,全尾数Nで除したオイカワの遮蔽板利用率 $\overline{n_s}/N$ を求めた.図-4に体長倍流速 U_m/B_L とオイカワの遮蔽板利用率 $\overline{n_s}/N$ との関係を遮蔽板高さ $H_s/\overline{B_u}$ のケース別に示した.いずれの遮蔽板高さにおいても体長倍流速の増加に伴う遮蔽板利用率の変化は明確には確認されない.ケース間で比較すると,遮蔽板高さの増加に伴いオイカワの遮蔽板利用率が増加することが判明した.

オイカワの遮蔽板利用時間 t_s を遮蔽板を利用した回数 N_s で除してオイカワの一回の遮蔽板利用時間 t_s/N_s を求めた.図-5に体長倍流速 $U_m/\overline{B_L}$ と一回の遮蔽板利用時間 t_s/N_s との関係を遮蔽板高さ $H_s/\overline{B_H}$ 別に示す.いずれの遮蔽板高さにおいても体長倍流速の増加による顕著な傾向は見られない.ケース間で比較すると,遮蔽板高さの増

上より、遮蔽板高さの増加に伴い、オイカワは遮蔽板背後 に長く滞在することが判明した.

遮蔽板を流下方向に投影した領域を遊泳するオイカワの 平均対地速度Vgsを平均体長 BL で除して遮蔽板投影領域内 の平均体長倍対地速度V_{ss}/B_Lを求めた.同時に,遮蔽板を流 下方向に投影した領域以外を遊泳するオイカワの平均対地 速度V。を平均体長 BL で除して遮蔽板投影領域外の平均体 長倍対地速度 V_g/B_L を求めた.図-6(a)に体長倍流速 U_m/B_L と 遮蔽板投影領域内の平均体長倍対地速度Vgs/BLとの関係を

:遮蔽板高さ H_s/B_H別に示す.いずれの遮蔽板高さにおいても体長倍流速の増加による遮蔽板投影領域内の平均対 地速度に顕著な傾向は見られない.ケース間で比較すると,いずれの体長倍流速においても遮蔽板高さの高い C4.5, 6のケースでは遮蔽板高さの低い Cl.5,3のケースと比較して,遮蔽板投影領域内の平均対地速度は低い値を示 している.図-5より遮蔽板高さの増加に伴い,遮蔽板背後の低流速域に長く滞在するオイカワの尾数が増加 するため,遮蔽板投影領域内での平均対地速度が減少したと考えられる.図-6(b)に体長倍流速U_m/B_Lと遮蔽板投 影領域外の平均体長倍対地速度V₂/B_Lとの関係を遮蔽板高さH₂/B_H別に示す.いずれの遮蔽板高さにおいても体長 倍流速の増加に伴い,遮蔽板投影領域外の平均対地速度は減少傾向にある.ケース間で比較すると,遮蔽板高さ の増加に伴い遮蔽板投影領域外での平均対地速度は増加傾向を示した.図-6(a)より遮蔽板高さの増加に伴い遮蔽 板投影領域内で平均対地速度が減少するため、オイカワは疲労回復することができ、遮蔽板投影領域外で力強く 遊泳できるために遮蔽板投影領域外の平均対地速度が増加したと考えられる.

4. おわりに

本研究で得られた結論を以下に示す.

- (1) 遮蔽板高さの増加に伴い上流まで到達するオイカワの尾数,オイカワの遮蔽板利用率が増加する.これは遮蔽 板高さの増加に伴い遮蔽板背後の低流速域が増加するためである.
- (2) 遮蔽板高さの増加に伴いオイカワの遮蔽板投影領域外の平均対地速度は増加する.これは遮蔽板高さの高いケ ースでは、オイカワが遮蔽板背後の低流速域に長時間滞在することができ、疲労が回復するためである.

参考文献

1) Webb, P.W.: Hydrodynamics and energetics of fish propulsion, Bull. Fish. Res. Bd Can., Vol.190, pp.1-159, 1975.