切断された RCT 桁の残存耐荷力および構造特性同定の可能性の検討

長崎大学 学生会員 豊福 晋ノ介,國廣 智志,海部 貴裕 長崎大学 正会員 山口 浩平,松田 浩

1. はじめに

我が国にある約70万橋の橋梁のうち,建設後50 年を超えた橋梁の割合は2013年では約20%であっ たが、2033年には約70%にも増加する見通しであ る.現在の橋梁定期点検近接目視では,損傷や腐食 等の材料劣化や外観変状がわかるのみで,「安全 性」・「落橋の可能性」・「通行止めの必要性」・「補修 の必要性」を明確に判断することは難しい.この解 決方法として,構造特性同定を用いた性能・リスク 評価が挙げられ,図1に示すフローが考えられる.

構造特性同定とは,実験的手法と解析的手法をそ れぞれ行い,両手法によって得た結果を比較し性 能・リスク評価を行うことである.

本研究では、切断された RCT 桁を対象として、図 1 に示す赤枠内の範囲において、構造特性同定への 適用性を検討することを目的とした.

また、この構造特性同定の過程における手法のユ ーザービリティや汎用性などについても検討した. 従来の計測機器を用いるとともに、現場載荷試験で はレーザトップラ速度計(以下:LDV)、サンプリン グモアレカメラ(以下:SMC)、切断桁載荷試験では、 これらに加えてひずみ可視化シート・デジタル画像 相関法(以下:DICM)などの最新の計測機器を用い 計測を行った. 点検の際の安全面を考慮するため、 できる限り仮設足場を使用しない計測法を用いて 計測を行い、その有効性について検討した.

2. 対象橋梁の諸元および載荷試験の概要

2.1 対象橋梁

対象橋梁は上り線が鉄筋コンクリートT桁橋,下 り線が鉄筋コンクリート床版橋で構成される単径 間の橋梁である.本稿では鉄筋コンクリートT桁橋 を対象とし,橋梁Aと呼称する.橋梁Aの詳細を表 1,図2,図3,図4に示す.

A橋は,詳細な設計図が残されておらず,昭和29年(G2~G6)に中桁が架設され,昭和34年(G1,G7)に耳桁が増設された.架設年が5年違うにも関わらず,耳桁(G1,G7)が中桁(G2~G6)よりも鉄筋が腐食している状態である.現場実証試験では,A橋に載荷し構造特性同定への適用性を検討した.本稿では,強度試験や桁単位でのFEMによりA橋の構造特性同定の精度を上げるとともにA橋から桁を切断し載荷試験を行った.

2.2 切断桁の載荷試験

切断桁においては,静的載荷試験を行い,その詳細を図5に示す.図5に示すように,2点集中載荷で行い,ひび割れ発生荷重,鉄筋降伏荷重到達時には一度除荷し,目視によるひび割れ調査を実施した.

次に DICM とは、変形前後の計測物をデジタルカ メラで撮影したデジタル画像を用いて解析するこ とで、広範囲の変位分布やひずみ分布を計測できる 手法である.接触式変位計の計測位置は、図5の① ~⑤の矢印で示す5ヶ所、DICMでは、四角の範囲内 での計測を行った.曲げスパン中央の③の値におい て、接触式変位計と DICM の変位の比較を行った.

図1 構造特性同定

表1 A橋の諸元

図4 A橋の状況写真

V-016

2.3 FEM

切断桁では,実際の切断桁を詳細にモデル化して, 実際の切断桁に近い挙動を示すと考えられること からこの結果を解析の真値とした. 材料特性を表 2に示す.切断桁の強度試験および鉄筋探査を行い、 表2に示す材料特性を FEM 時に反映させた.

3. 結果および考察

3.1 載荷試験

切断桁の載荷試験では、曲げ破壊を呈した.表3 に実験値・理論値・解析値の結果を示す.表3から, ひび割れ発生荷重(Pcr)・鉄筋降伏荷重(Py)・終局荷 重(Pu)は実験値と理論値は概ね一致した.これは残 存耐荷力の推定ができることを示唆している.

変位計と DICM の計測結果を図6に示す.図6よ り,接触式変位計と DICM から得られた結果は概ね 一致している.

図7にひずみ計測結果を示す.図7,表3より, 理論値と実験値は概ね一致していることがわかる.

図8にDICMより得たコンター図を示す. コンタ ー図のレンジは 0 から 15000(μ)に統一している. 図 8, 表 2 より, 100kN 時(ひび割れ発生荷重前) では目視でひび割れを確認できないが DICM 上では ひずみの集中領域を確認できた. 730kN時(終局荷 重時)では、ひずみゲージでは計測不能の大ひずみ を, DICM では計測することができた. 試験結果よ り、DICM を用いることでひび割れ発生前や終局時 のひび割れを可視化することができた.

3.2 FEM

図6、図7より、荷重-変位・荷重-ひずみに関 して実験値と解析値の剛性は概ね一致したが,終局 (Pu) は大きくずれた. この原因として, 切断桁の 材料劣化や解析の精度が十分ではなかったなどの 原因が考えられる.

4. 結論

本研究では、切断された RCT 桁を対象とした構 造特性同定への適用性を検討することを目的とし 検討を行った.その結果,実験値と理論値は概ね一 致したが解析値と実験値と理論値は若干の差が生 じた. 今後は桁単位での解析精度を上げ実橋にも反 映させ,構造特性同定の精度をあげることが今後の 課題として考えられる.

参考文献

1)国土交通省 HP

https://www.kkr.mlit.go.jp/road/maintenance/roukyu/genjyou.html2) 出水亨, 松田浩, 伊藤幸広, 木村嘉富: デジタル画像相関法を用いた橋梁

のたわみ計測方法の開発,鋼構造年次論文報告集,第19巻, pp.671-676, 2011.11

3) 國廣智志,山口浩平,工藤賢二,松江匡紀:光学的計測法を用いた RCT の構造特性同定,長崎大学大学院工学研究科研究報告,第48巻,第91号, pp.39-46, 2018

-722-