長崎大学工学部 学生会員 土肥弘聖 長崎大学大学院工学研究科 NGUYEN CONG TAN THANH 長崎大学大学院工学研究科 正会員 鈴木 誠二

1 はじめに

日本には中小数多くの河川が存在するが、すべての河川において 継続的に河川形状、水質や流量などの基礎的データを取得すること は難しい.特に日本では1級河川以外では、継続的にデータをほと んど取得できていない現状である.そこで簡易的な水質データの取 得を目指し、UAV を用いて、空撮画像を撮影し、得られた画像か ら水質を推定すること本研究の目的とする.特に本研究では、水質 指標として比較的画像解析が容易な浮遊懸濁物質に着目した.

2 研究方法

2.1 現地観測

本研究の対象領域は,長崎県諌早市にある諌早湾調整池の境川流 入域(図・1)とし,2018年9月28日の9時から15時にかけて観 測を行った.観測地点を図・2に示す9ヶ所設定し,それぞれをA~I 地点とした.観測方法として各地点で1時間おきに採水を行い,分 光光度計にて浮遊懸濁物質濃度を測定する.さらに,同時にUAVに よる撮影のほか,風向・風速と日射量の計測も実施した.

2.2 分析方法

観測にて得られた空撮画像から RGB 値を抽出する. RGB 値, 日

図-1 諫早湾調整池観測地点

図-2 A~I 観測地点

表-2 各地点の SS 濃度

射量を用いて複数のパターンの回帰分析を行った.回帰分析とは,相互依存の関係にある変数があるとき,一 方の数値が与えられたとき,他方の組を予測できるものである.複数の変数の関係を一次方程式の形で表現す る分析方法である.予測したい変数のことを目的変数といい,目的変数を説明する変数のことを説明変数とい う.その後,得られた推定値と実測値の比較し,推定モデル式を提案する.

3 研究結果と考察

表-1 SS と RGB の重回帰分析一覧表

res.	əs. 重回帰分析モデル式			\mathbb{R}^2	res.	重回帰分析モデル式			R ²		SS(mg/l)								
1	SS	~	R	0.779	14	SS	~	cB	0.012						, 0,	•			
2	SS	~	G	0.485	15	SS	~	cR+cG+cB	0.016	時刻	А	В	С	D	E	F	G	Н	
3	SS	~	В	0.614	16	InSS	~	R	0.829	9.00	g	83	93	380	92	R	26	69	123
4	SS	~	R+G	0.854	17	InSS	~	G	0.554	5.00	5	05	55	302	52	5	20	05	125
5	SS	~	R+B	0.822	18	InSS	~	В	0.728	10:00	12	64	68	98	104	3	36	70	131
6	SS	~	G+B	0.686	19	InSS	~	R+G+B	0.918	11.00	11	61	56	06	112	17	15	60	125
7	SS	~	[R+G]	0.705	20	InSS	~	[R+G+B]	0.717	11.00	11	01	50	90	112	17	45	09	100
8	SS	~	[R+B]	0.643	21	InSS	~	IncR	0.822	12:00	10	49	62	91	124	24	58	74	155
9	SS	~	[G+B]	0.794	22	InSS	~	IncG	0.526	12.00	10	F.2	5 1	10	110	22	62	76	144
10	SS	~	R+G+B	0.855	23	InSS	~	IncB	0.699	15:00	10	22	1C	49	110	32	02	10	144
11	SS	~	R+G+B+Sorad	0.702	24	InSS	~	InR+InG+InB	0.924	14:00	10	49	54	49	107	29	35	71	148
12	SS	~	cR	0.008	25	InSS	~	IncR+IncG+IncB	0.869	15.00	10	<u> </u>	70	ГС	00	20	07	70	70
13	SS	~	cG	0.002	26	InSS	~	InR+InG+InB+InSorad	0.906	12:00	10	00	10	90	90	26	21	19	18

3.1 RGB 値による重回帰分析結果

図-3 は SS 値と RGB 値の関係性をグラフにしたものである. グ ラフより R 値, G 値, B 値, ともに線形で近い数値となっており, 浮遊懸濁物質と良い相関関係にあることがわかる.

表・1 は複数のパターンにて重回帰分析を行った結果を表にまと めたものである. 表・1 の res.1~15 では RGB の R, G, B, 日射 量を説明変数とし, 目的変数を SS (浮遊懸濁物質) として複数の パターンにて重回帰分析を行った. res.16~26 では, 目的変数を lnSS として重回帰分析を行った.

複数のパターンにて重回帰分析を行った結果,式(3.1-1)はR²(自由度調整済み決定係数)=0.924,式(3.1-2)が浮遊懸濁物質の推 定において,有効な推定式として得られた.

lnSS=lnR+lnG+lnB(3.1-1)

 $SS = e^{8.19\ln(R) - 8.16\ln(G) + 7.892\ln(B) - 37.801}$ (3.1-2)

式(3.1-2)から得られた浮遊懸濁物質の推定値と実測値を比較した結果,近い数値を示した.(図-4)

表-1の res.24 と res.26 より浮遊懸濁物質の推定において, R^2 の 数値に大きな差がないことから, 日射量の影響は少ないことが分かった。

3.2 浮遊懸濁物質の濃度推定の分布図

図-5 は式(3.1-2)を用いて推定した 9 時の空撮画像と浮遊懸濁 物質の濃度分布図である.

実際の空撮画像と比べた結果,太陽光の反射している部分では, 分布図では高濃度の浮遊懸濁物質を含む水塊が存在してることを 表している.F地点は河底の地質が他の地点と異なり浅く空撮画像 では黒くなっているが,実測値と分布図からわかる濃度では大きな 差はなかった.このことから,河底の色の変化や深度による影響は 少ないことが分かった.

4 結論

UAV による空撮画像から浮遊懸濁物質濃度を推定することは,基準となる浮遊懸濁物質の濃度が得られれば,式(3.1-1)を用いることにより可能である.しかし,観測日が変わると精度が下がるので,観測毎に浮遊懸濁物質の基準値を採取し検定する必要がある。空撮画像は気象の影響を受け易いため,太陽光の反射により異なる推定値を算出する場合がある.

今後の課題として,気象条件の影響の除去方法の確立や,水域と 陸域や植生の境界部の抽出が必要である.

図-4 SSの推定値と実測値比較

図-5 浮遊懸濁物質濃度推定分布図 (下図)