大型振動台実験による直立式およびもたれ式蛇籠擁壁の地震時破壊形態の比較

佐賀大学理工学部	学生会員	○松田	衛	佐賀大学	正会員	末次	大輔
防災科学技術研究所	所 正会員	中澤	博志	高知大学	正会員	原	忠
高知大学大学院	学生会員	田所作	右理佳	高知大学	学生会員	柴原	隆
CPC	正会員	西岡	則整	エイト日本技術関	月発 正会員	栗林像	建太郎

1. はじめに

ネパール国では蛇籠を使った土木構造物が本施工 として数多く使用されている.2015年4月25日に 発生したネパール・ゴルカ地震,ならびに地震後の豪 雨により多くの蛇籠構造物が被害を受け,特に山間 部では斜面崩壊に起因する道路閉塞が多発した.著 者らのグループはカトマンズから中国国境を結ぶア ラニコ・ハイウェイの蛇籠構造物を対象に地震被害 調査を行って蛇籠の積み方や被災形態を整理し,蛇 籠擁壁の地震時安定性の解明や,統一した施工方法 の確立の必要性を示した^{例えば1)}.本研究では蛇籠擁壁 の地震時の破壊形態を明らかにすることを目的に, 実物大の蛇籠擁壁の振動破壊実験を行った.本論文 では,直立式3段積み擁壁ともたれ式3段積み擁壁 の破壊形態の違いについて述べる.

2. 研究方法

本研究では、防災科学技術研究所所有の振動台を 用いて、実物大の直立式蛇籠擁壁(以下、直立式)と もたれ式蛇籠擁壁(以下、もたれ式)の地震時破壊形 態を比較した.実験には蛇籠網($1m \times 1m \times 1m$),中詰 め材(平均粒径 20cm),まさ土($\rho_s=2.66g/cm^3$, $D_{50}=1.7mm, w=7.5\%$)を使用した.もたれ式は蛇籠を 一段毎に 20cm ずつ後方にずらす階段積みである.背 後地盤は振動コンパクタを用いて 5 往復の転圧を行 った.加振時の蛇籠と地盤挙動を測定するために加 速度計と変位計を以下の図-1 に示す位置に設置した. 振動台実験の加振条件は加速度の異なる 3Hz の正弦 波を4段階で入力した.1回目は 50Gal を目標に加振 し、2回目は 100Gal、3回目は 150Gal,および 4回 目に 200Gal とした.

図-1 振動台実験モデル断面図(もたれ式)

3. 実験結果と考察

(1) 加振時の蛇籠擁壁の動的挙動

100Gal 加振時における直立式ともたれ式の最上段 の蛇籠天端と前面の水平変位、ならびに背後地盤地 表面の水平変位の時刻歴を図-2に示す.直立式の場 合は正の変位が徐々に累積して増加している.この ことから蛇籠が傾いて蛇籠近傍の地盤が破壊したこ とが読み取れる.これは蛇籠擁壁と背後地盤との間 に位相差が生じたことが原因と考えられる²⁾.もたれ 式の場合でも背後地盤の破壊が生じた. 蛇籠擁壁と 背後地盤との間で位相差が生じているものの、

直立 式に比べて加振中の累積水平変位量は小さいため破 壊の規模は小さい.また,もたれ式では最上段の蛇籠 天端前方(LD-01H)が負の方向に変位していること から最上段の蛇籠が水平方向に約 100mm 圧縮して いることがわかる.これは最上段の蛇籠が拘束され ていないことや、加振中に崩壊した背後地盤の土塊 が蛇籠を前方に向かって押したことが原因として考 えられる.

図-2 100Gal 加振時における蛇籠と地盤の水平変位 の時刻歴データ

(2) 加振後の蛇籠擁壁の変形と背後地盤の破壊状況

加振終了時の蛇籠前面の水平変位の深度分布を図 -3 に示す.もたれ式の場合は 20cm セットバックさ せた点をゼロ(原点)として,各加振段階終了時にお ける蛇籠の水平変位量を示している.もたれ式及び 直立式ともに上段の蛇籠ほど大きく前方に変位して いることが分かる.直立式は3段階目加振から擁壁 が大きく変位しているが,もたれ式の場合は直立式 に比べ擁壁の変位は小さい.最終的には,直立式にお いては前に倒れこむ形状に変形するが,もたれ式は 初期状態よりも前傾するものの,セットバックした 状態を維持したことがわかる.

加振終了時の蛇籠擁壁と背後地盤の加振後の断面 座標データを図-4に示す.また,加振終了時の蛇籠 擁壁近傍の地盤の崩壊の様子を写真-1に示す.直立 式は蛇籠擁壁と背後地盤との間にクラックが発生し て蛇籠擁壁が前面に倒れこみ,背後地盤は広い範囲 で大きく沈下していることがわかる.一方,もたれ式 の場合もクラックが発生し擁壁背後地盤も沈下して いるが,直立式に比べその量は小さい.

写真-1加振終了後の蛇籠擁壁近傍の地盤崩壊および クラック発生個所 (写真左:直立式 写真右:もたれ式)

4. まとめ

もたれ式の蛇籠擁壁では,地震時に背後地盤の間 に位相差が生じ,擁壁背後地盤においてクラックの 発生や沈下が発生するものの,その規模は直立式に 比べ小さかった.また,蛇籠擁壁の変形や前傾は極め て小さいことがわかった.よって,蛇籠擁壁はもたれ 式にすることによって,地震時の安定性を高めるこ とができるといえる.

謝辞:本研究は日本学術振興会科学研究費補助金(基盤 B(一般) 16H04413 および(海外学術調査) 16H05746)により実施されたものです.記して謝意 を表します.

参考文献

- 中澤,他:2015 年ネパール・ゴルカ地震における蛇篭構造 物に関する被害調査~その2蛇篭実態調査~,第51回地 盤工学研究発表会発表講演集,pp. 1659-1660, 2016.9.
- 2) 松尾,他:振動台実験による直立蛇籠擁壁の地震時破壊形態の解明,土木学会西部支部研究発表会,pp. 331-332, 2017.3.