屈折率の等価性を利用した粒状体の間隙内ガス挙動の可視化

熊本大学大学院 村田 宗一郎, 椋木俊文 熊本大学 技術部 吉永 徹

1. はじめに

ガソリンなどに代表される揮発性有機溶剤の地盤汚染 は, 溶剤そのものの浸透流と溶剤が間隙中に溶解して伝 搬し、空気間隙中にガス化することによって広域に地盤 汚染が拡大する¹⁾. エアースパージング法により地盤内を 不飽和化し、そこにガスを誘導して吸引する方法が提案 されているが、特に地中におけるガスの輸送メカニズム を明らかにした研究は少ない. そこで本研究の目的は, 間 隙中における気体および液体の有機溶剤のダイナミック な挙動を理解することである.本報では、粒状石英ガラス を用いて 2 次元模型地盤を作成し、これに石英の屈折率 とほぼ等価な油を注入することで、対象地盤を透明化さ せることができ、そこに空気を注入させることにより、粒 状材料中の空気の挙動を可視化したので報告する.

2. 実験概要

屈折率が石英ガラスに近い間隙流体には、株式会社 MORESCO 千葉工場の流動パラフィンであるモレスコホ ワイトを用い、ガス体には、空気を用いている.表1に本

表1 試料の物理特性			
	密度(g/cm ³)	屈折率(-)	粒径(mm)
石英ガラス	2.210	1.4585	0.5-2.0
流動パラフィン	0.839	1.4588	_
空気	0.001	1.0000	_
1100mm 一 石英砂層 11111 1111 1111 1111 1111 1111 1111 1111 1111 1111	5フィン 100 m ^m 150mm	nn 3řnn	電光板

図 1 実験概要

カメラ

実験で用いた試料の物理特性を示す.図1には、本研究で使用する模型の概要を示す.模型はアクリル製で あり、初期状態で模型に流動パラフィンを飽和させ、石英ガラスを充填している.これにより、図 2(a)に示 すように初期状態では見かけ上透明になる.模型内には外径 2.0mm のチューブが設置してあり、これにより 模型の下方から空気を10.0ml注入する.このようにして、空気がどのように石英ガラス中に取り残されるの かを観察することができる.また,その後パラフィンを 5ml 注入し,空気の挙動を観察する.撮影条件とし て、模型の100.0mm後方に電光板を設置することで、模型土槽全体の照明度が一定として、デジタルカメラ で撮影する.本研究では、模型の局所的な部分を撮影するため土槽表面から 50.0mm の位置に使用したデジ タルカメラ(Lumix DMC-FX150)の限界最短距離でセットした.

3. 実験結果

図2(a).(b)は、図1における模型土槽下部中央の点線で囲んだ部分の写真であり、図2(c)は、さらに図2(b)中 の四角の領域を拡大したものである. 図2(b)より,空気が石英ガラス中に取り残されている様子が分かる. また、図2(c)に赤丸で囲んだ空気に着目すると、取り残された空気が連続した二つの空隙中に存在して中央 がくびれた状態で停滞している様子が観察できる.

図3(a)と(b)は、空気の挙動を9.0秒間の変化で観察したものである.また、得られた画像を使って画像解析 により、空気がどの方向にどのように動いたのかを求めることが出来る.例として、図3(a)中の1,2,3番の

空気に着目すると、間隙中に取り残された空気が9秒後に1で174.1°, 6.1mm, 2で128.0°, 12.4mm, 3で91.9°, 4.1mm変化したことが分かる.また図3(c)は画像(b)から画像(a)を差分した画像である.中部の輪郭が消えて おり、画像間差分における位置調整は良好と判断した.したがって、図3(c)中に見られる白い領域は、9秒間 において空気が移動した領域を示していると言える.また、黒い領域は差分されたことにより輝度値がゼロ になったことを意味し、その領域は空気が動かなかったことを意味している.このような撮影を連続的に行 うことにより、地盤中における揮発性有機溶剤のガス体の挙動を把握することが期待される.

4. 今後の課題

本報では、石英ガラスを利用することで、屈折率が石英ガラスにほぼ等しいパラフィンに注入した空気が、 どのように石英ガラス中に取り残されるのかを可視化する実験を行った.本実験の課題として、本研究では 揮発してガス化した有機溶剤を想定して空気を注入したが、今後は空気だけでなく、液体油を想定した実験 も行いたい.また、模型がアクリル製のため、模型に接する流体において、間隙流体の挙動に局所的な違い が生じる.そのため、模型をガラス製にすることが望ましい.今後はこれらの技術を用いて、取り残された 汚染物質を想定した流体を取り除く実験を行う予定である.

参考文献

1) Kevin G. Mumford, James E. Smith, Sarah E. Dickson : New Observations of Gas-Phase Expansion above a Dense Nonaqueous Phase Liquid Pool : Vadose Zone Journal.org Vol.8, No.2, May 2009.