反応拡散系理論に基づいた Sinkhole 形成シミュレーション

琉球大学 学生会員 〇川上 凌梧

琉球大学 正会員 松原 仁

1. はじめに

Sinkhole は炭酸カルシウムを主成分とするカル スト台地のような地形において多発する地盤陥没 現象であることが知られており,雨水や地下水な どによって石灰岩の層が溶解することで発生する と考えられている.実際に,世界各国の都市部で 多くの被害が確認できる.一例として,ネパール で実際に発生した Sinkhole を図-1 に示す. Sinkhole 問題における岩盤溶解等の基本的なメカニズムは 解明されつつあるものの,その具体的な発生個所 や岩盤の動態的挙動を詳細かつ高精度に予測でき る技術の提供には至っていない.

一方で、Sinkhole が引き起こす被害は物理的被害 だけでなく人的な被害も招く恐れがある.したが って、Sinkhole の発生メカニズムを解明することは 工学上極めて重要であり、人間生活に与える影響 を評価することが必要となる.琉球諸島において も例外でなく、地層の多くが第四期琉球石灰岩で 形成されていることを考慮すると、本課題は琉球 諸島でも重要な問題であると考えられる.

Sinkhole は岩盤内部の亀裂面が 3 次元的に形成 され,進行していく現象であるが,亀裂面の形成 や岩盤全体の巨視的な動態挙動については,対象 とする現象が複雑かつ大規模なものであるためこ れらを統合的な観点から予測することは困難な現 状がある.また,Sinkhole に関する過程観察や再現 実験を行うことは困難であり,災害後の調査など に頼らざるを得ない現状である.

そこで本研究では、岩盤内部で発達する Sinkhole

図-1 実際の Sinkhole(Modified from Rama et al. 2015)⁽¹⁾

キーワード Sinkhole, 地盤陥没 連絡先 〒903-0123 西原町千原1番地 琉球大学工学部環境建設工学科 E-mail matsbara@tec. u-ryukyu. ac. jp

の動態挙動を詳細かつ高精度に予測するため,反応拡散系理論を基盤とした3次元 Sinkhole 形成シ ミュレータを開発し解析を行った.

2. 数理モデル

石灰岩内部で起こっている溶解反応は次式にて 表すことができる.

$$CaCO_3+H_2CO_3 \leftrightarrow Ca^{2+}+2HCO_3^{-}$$
 (1)

ゆえに,式(1)に各物質の流入と拡散を考慮する と,以下に示す方程式を得ることができる.

 $\frac{\partial \mathbf{A}}{\partial t} = k_1[\mathbf{A}][\mathbf{B}] + k_2[\mathbf{C}][\mathbf{D}]^2 + \alpha([\mathbf{A}]_0 + [\mathbf{A}])$ (2)

 $\frac{\partial B}{\partial t} = k_1[A][B] + k_2[C][D]^2 + \beta([B]_0 + [B]) + D_1 \nabla^2 B$ (3)

 $\frac{\partial C}{\partial t} = k_1[A][B] - k_2[C][D]^2 + \gamma([C]_0 + [C]) + D_2 \nabla^2 C \qquad (4)$

$$\frac{\Delta}{\partial} = k_1[A][B] - k_2[C][D]^2 + \delta([D]_0 + [D]) + D_3 \nabla^2 D$$
(5)

ここで、A:CaCO₃、B:H₂CO₃、C:Ca²⁺、D:HCO₃⁻、 α :CaCO₃の流出率、 β :H₂CO₃の流出率、 γ :Ca²⁺の流 出率、 δ :HCO₃⁻の流出率、 k_1k_2 :反応速度定数、t:時間、 D₁、D₂、D₃、はそれぞれ H₂CO₃、Ca²⁺、HCO₃⁻の拡 散係数であり、これらの式を石灰岩溶解の支配方 程式とした.なお、CaCO₃は固体であるため拡散 は考慮していない.

3. 数值解析例

本研究では,前章で提案した数理モデルを差 分法にて離散化した.数値解析例として図-2 に

図-3 石灰岩の時間ステップ別の溶解パターン

(d)360000 ステップ

図-4 空洞の連結 (360000 ステップ)

示すような解析モデル設定した. 同図に示すよ うに直方体領域を解析対象とし、モデルのサイ ズは 2×1×0.75,2 つの空洞内部の半径は 0.1 に設定し, 空洞内部には常に水が流入するよう に設定した. 本モデルの総格子点は 410865 であ り、境界には Neumann 条件を設定し、岩盤内部 による初期の各物質量はランダムになるように 設定した.

図-3 に時間ごとの空洞の変化を示す. 同図よ り、2つの空洞は時間が進むごとに大きくなって いることが確認できる.これは、空洞内部に流 入している H₂CO₃が拡散し CaCO₃が化学反応 によって溶解しためであることが原因であると 考えられた.

図-4 に空洞が連結する様子を示す.図-3(a)で は空洞は接していないが、時間が進むごとに空 洞が拡大し連結することが確認できた.これは, H₂CO₃の拡散により,空洞内部でH₂CO₃が全方 向に広がり CaCO3 と反応し溶解したためである と考えられた.

各物質の時間変化に伴う濃度変化を図-5 に示 す. 同図より, H₂CO₃が増加することによって CaCO₃ は減少していることが確認できる.この ことは、CaCO₃とH₂CO₃が反応しCa²⁺とHCO₃-を生成したことが原因であると考えられた.

また、

同図より Ca²⁺と HCO₃-は急激に

増加し 時間が進むにつれて緩やかに減少していること が確認できる. このことは, 式(1)において反

応速度 $k_1 k_2$ の値に差があり、 k_1 の値が大きい ためCaCO3が初期段階でH2CO3と反応し、Ca²⁺ と HCO₃が大量に生成され、時間が進むにつれ 反応速度 k₂ の影響により Ca²⁺と HCO₃ の量が 減少したことによるものと考えられた.

4. まとめ

本研究では、反応拡散系理論を基盤とした 3 次元 Sinkhole 形成シミュレータを開発した. そ の結果、時間ごとにおける石灰岩の溶解を確認 することができた.しかしながら,各物質にお ける係数は実測値ではない. また, 空洞内部に 常に水が流入されると仮定しているため実際の Sinkhole 現象とは異なる部分がある.以上の解 析結果より、今後、様々なパターンの解析モデ ルの解析を行い、今回の解析データとの比較を 行うとともに、地下水流れを考慮した解析を行 う必要がある.

また、実際に石灰岩が溶解する実験を行い実 験値の係数と比較を行い、より実際の現象に近 い係数を設定し、高性能な3次元 Sinkhole 形成 シミュレータの開発を行う必要があると考えら れる.

5. 参考文献

(1) R. M. Pokhrel et al., Preliminary Field Assessment of sinkhole Damage in, Pokhara, Nepal, Int . J. Geoengineering Case Histories, Vol. 3(2),p113-125.