地球温暖化や都市化が日本の気候変動に及ぼす影響

大分高専 正会員 東野 誠 大分高専 正会員 〇工藤宗治 大分高専専攻科 広瀬 優

1. まえがき

地球温暖化は全球レベルで気温を上昇させ,また降雨パターンの変化等,種々の気候変動を引き起こす. IPCC によると,1906~2005 年の 100 年間に地球の平均気温は 0.74 $^{\circ}$ $^{\circ}$ 上述の気候変動には,地球温暖化だけでなく都市化の影響も関わっていると考えられる.我が国の気温や降水の長期変動については,気象庁の長期間に亘る観測結果を基に,藤部によってよく検討されている $^{\circ}$ 。本研究では,藤部とは少し異なる視点で我が国の最近 100 年間 $(1906\sim2005$ 年) の気候変動に着目し,後述 (2.) のように東京や大阪を含む都市 (8 地点)と都市化の影響は無視し得ると考えられる 8 地点を選定して,気温と降水量の経年変化を調べるとともに,地球温暖化や都市化が気候変動に及ぼす影響について考察した.

2.調査地点

全球的な地球温暖化,および都 市化が我が国の気候変動に及ぼ す影響を調べるために, 気象庁が 定期観測を行っている地点の中 で表-1 に示す 16 地点を選定した. これらのうち 8 地点は東京や大 阪を含む人口密集地域(Category B & C)であり、残りは都市化の 影響が想定し難い地点(Category C)である. なお, 表-1 において, Category A は人口 100 万人を超 える大都市, Category B は中核 市, それ以外を Category C とし た. 調査地点の中で最も高緯度の 地点は根室, 低緯度は石垣である. また, 最東地点は銚子, 最西地点 は石垣である. 気象庁の HP3)よ りこれらの地点の 1906~2005 年 の 100 年間に亘る気温と降水量 のデータを入手し,解析に供した.

3. 気温と降水量の変化

各調査地点での 1906~2005 年 の 100 年間における年平均気温 の平均値とその上昇率を表-2 に 示す. 全ての調査地点において IPCC による全球平均気温上昇率 0.0074℃/year を上回っている. ま た,大都市(Category A),中核市 (Category B), それら以外 (Category C)の順に気温上昇率 は大きく,都市化の影響が示唆さ れる. 表-2 中には Mann-Kendall 検定による Z値と p-value が併示 されているが、全調査地点におい て p-value は 0.01 以下であり, 危 険率1%で明確な気温の上昇が認 められる.

次に,同期間(1906~2005 年) での各調査地点における年平均

表-1 調杏地点

衣-1 調査地点								
No.	都市	latitude	longitude	Category	気候			
1	根室	43.33	145.58	A	オホーツク			
2	寿都	42.8	140.22	A	日本海			
3	山形	38.25	140.34	В	日本海			
4	伏木	36.8	137.05	A	日本海			
5	銚子	35.73	148.85	A	太平洋			
6	東京	35.69	139.69	C	太平洋			
7	境	35.53	133.23	A	日本海			
8	京都	35.01	135.77	C	瀬戸内			
9	浜田	34.9	132.08	A	日本海			
10	大阪	34.69	135.5	C	瀬戸内			
11	松山	33.84	132.77	В	瀬戸内			
12	福岡	33.59	130.4	C	太平洋			
13	高知	33.56	133.53	В	太平洋			
14	大分	33.24	131.61	В	瀬戸内			
15	名瀬	28.37	129.45	A	太平洋			
16	石垣	24.34	124.16	A	亜熱帯			

表-2 各調査地点の気温上昇率

No.	都市	Mean daily temperature (°C)	Trend (°C/year)	Z	p-value
1	根室	5.8	0.0099	3.79	< 0.01
2	寿都	8.3	0.0073	3.46	< 0.01
3	山形	11.1	0.0143	6.44	< 0.01
4	伏木	13.4	0.0121	5.92	< 0.01
5	銚子	15.0	0.0096	4.36	< 0.01
6	東京	15.0	0.0307	10.7	< 0.01
7	境	14.6	0.0117	5.94	< 0.01
8	京都	14.9	0.0266	10.1	< 0.01
9	浜田	14.9	0.0124	6.51	< 0.01
10	大阪	15.8	0.0233	9.58	< 0.01
11	松山	15.5	0.0196	8.74	< 0.01
12	福岡	15.8	0.0273	10.4	< 0.01
13	高知	16.1	0.0181	8.40	< 0.01
14	大分	15.5	0.0187	8.29	< 0.01
15	名瀬	21.2	0.0094	6.10	< 0.01
16	石垣	23.7	0.0120	7.65	< 0.01

降水量とそのトレンドを表-3 に示す. これより, 年間降水量 が減少傾向にあるのが 13 地点, 増加傾向が 3 地点であるが, Mann-Kendall 検定による p-value は 11 地点で 0.1 以上で ある. 東京のみp<0.01 であり, 危険率 1%で年平均降水量の 減少傾向は有意であるが, それ 以外では気温の上昇のような 明確な傾向変動は認められな い. 藤部が指摘するように 2), 気温への地球温暖化や都市化 の影響は顕著であるが,降水に 対しては気温ほど明瞭ではな V١.

4. 最近 100 年間での気温上昇 の要因

表-1 に示すような各調査地 点での最近の 100 年間(1906~ 2005 年)における気温上昇率

表-3 各調査地点の降水量の変化

我 看啊且地点《海水里》《爱儿								
		Mean annual	Trend					
No.	都市	precipitation	(mm/	${f Z}$	p-value			
		(mm/year)	year)					
1	根室	1035	-0.127	-0.0864	0.141			
2	寿都	1239	-0.889	-1.13	0.129			
3	山形	1197	-1.39	-2.21	0.0136			
4	伏木	2263	0.539	0.739	0.230			
5	銚子	1672	-1.47	-1.55	0.0606			
6	東京	1535	-2.15	-2.39	< 0.01			
7	境	1968	-0.204	-0.0625	0.476			
8	京都	1550	-0.374	-0.211	0.417			
9	浜田	1675	0.780	0.414	0.341			
10	大阪	1324	-0.338	-0.372	0.356			
11	松山	1339	-0.707	-0.828	0.203			
12	福岡	1631	-0.181	-0.578	0.281			
13	高知	2608	-0.111	-0.664	0.341			
14	大分	1659	0.474	-0.125	0.448			
15	名瀬	2996	-3.14	-1.89	0.0294			
16	石垣	2126	-2.12	-1.65	0.0495			

について、日最高気温、日最低気温、年最高気温、および年最低気温の 100 年間の上昇率との関係を \mathbf{Z} -1 に示す。これらと平均気温上昇率との決定係数は、それぞれ \mathbf{R}^2 =0.32、0.86、0.17、および 0.33 であり、日最低気温との相関が高い。気温上昇に及ぼす都市化による日最低気温の上昇が示唆されるが、前述(\mathbf{Z} .)のように全調査地点のうち、少なくとも 8 地点は都市化の影響を殆ど受けないと考えられるので、都市化よりもむしろ全国的な傾向として捉え

玄べきであろう.

5. まとめと今後の課題

以上のように、我が国に おける最近 100 年間(1906 ~2005年)の気候変動を調 べたところ,全国的に年平 均気温が上昇しているこ とを確かめた.この上昇傾 向は、人口密集地域ほど顕 著である.一方,降水量に ついては明瞭な傾向は認 められなかった. また, 100 年間での気温の上昇に関 しては、日最低気温の上昇 の影響が大きいことを見 出した. 今後は, 気温の上 昇の要因について,諸外国 での研究結果と比較しつ つ,より詳細に検討を行う 予定である.

参考文献

- 1) IPCC 第 4 次評価報告書, 2007.
- 2) 藤部文昭:日本の気候 の長期変動と都市化, 日本気象学会誌, pp.5-18, 2011.
- 3) 気象庁 HP: www.jma.go.jp/

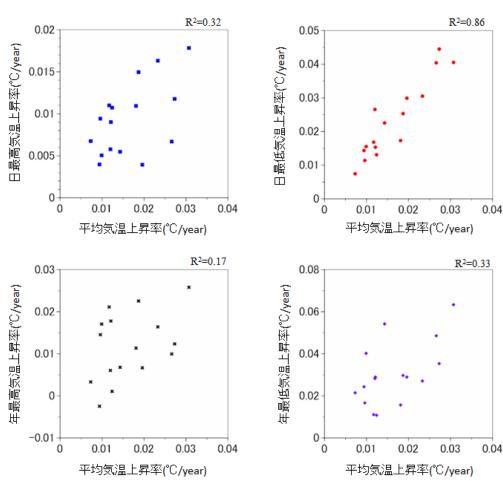


図-1 気温上昇率と日最高気温,日最低気温,年最高気温,年最低気温との関係