確率的部分空間法の設定パラメータが実橋振動特性の推定精度に与える影響

長崎大学大学院 学生会員 〇柴田剛志 長崎大学大学院 正会員 奥松俊博 長崎大学大学院 正会員 中村聖三 長崎大学大学院 正会員 西川貴文

1.はじめに

併用中橋梁における損傷報告件数は年々増加傾向に あるため、構造物の振動計測から構造特性を同定し、 その変化から損傷の検出・評価を試みることが期待さ れている.現在、構造物の動的応答のみを用いて構造 同定手法によって振動特性の推定を行う実稼働モード 推定が主流になりつつある.例えば、確率的部分空間 法(SSI: Stochastic Subspace Identification)によって、 供用中の常時微動や交通振動から振動特性を推定する 方法が挙げられる.その際に、複数の重要な計算パラ メータを設定する必要がある.著者らは、これまでに 簡易な FE 解析モデルを用いて常時微動シミュレーシ

図3 多径間連続箱桁橋の計測機器設置位置

ョンを行い,解析応答を用いて計算パラメータの変化に対する同定結果の変化に関して検討を行った¹⁾.本研究では,実応答を用いて計算パラメータと振動数の推定結果に関する考察を行った. 2.SSIにおける検討パラメータ

SSIは、応答として観測される出力データから線形代数の数学的演算によって状態変数 \mathbf{X}_k を推定し、状態空間モデルを推定するものである。時刻ステップkおよびk+1における状態変数 \mathbf{X}_k , \mathbf{X}_{k+1} の推定値 $\hat{\mathbf{X}}_k$, $\hat{\mathbf{X}}_{k+1}$ が得られると、下式を構成することで推定状態空間が表される。

$$\begin{bmatrix} \hat{\mathbf{X}}_{k+1} \\ \mathbf{Y}_{k|k} \end{bmatrix} = \begin{bmatrix} \mathbf{A} \\ \mathbf{C} \end{bmatrix} \hat{\mathbf{X}}_{k} + \begin{bmatrix} \boldsymbol{\rho}_{w} \\ \boldsymbol{\rho}_{v} \end{bmatrix}$$
(1)

ここに、 $\hat{\mathbf{X}}_{\iota}$ および $\hat{\mathbf{X}}_{\iota}$ は推定状態行列であり、 $\mathbf{Y}_{\iota\iota}$ は観測される応答行列である.

同定結果に影響を及ぼすパラメータはデータの時間分解能と特異ベクトル長と特異値への閾値 と初期モデル次数とセグメント長があるが、先行研究の結果から、特に重要な初期モデル次数と特 異ベクトル長を本研究の検討対象とした.

<u>2.1初期モデル次数</u>

データブロック行列の行ブロック数は、対象の状態空間モデルのモデル次数に相当するパラメー タの一つで、初期モデル次数と呼ばれる.理論的には、同定する対象構造モデルのモデル次数に対 して少なくとも2倍にする必要があるが、実際には、ノイズの影響などを考慮して、想定する状態 モデル次数の数倍から場合によっては10倍以上とする必要がある.

2.2特異ベクトル長

計算過程において特異値分解を行い,得られる行列の行数は上記の初期モデル次数に相当する. 初期モデル次数は同定対象のモデル次数よりも大きめに定めるが,特異値が小さい成分に対してモ デルの推定を行うと,不安定な結果が得られるため,特異ベクトル長を定める必要がある.

3.対象橋梁と計測概要

本研究では,先行研究で解析的な検討を行った図1に示す鋼ランガー橋(橋長:115.0m)に加え て,構造形式の異なる図2に示す三径間連続箱桁橋(橋長:225.0m)及び,図3に示す多径間連続 箱桁橋(橋長:876.0m)の3つの橋梁を対象とた.各計測では,赤丸で示す位置に加速度計を設置 し、サンプリングレートを 1000Hz・200Hz・200Hz に設定 し、供用環境における鉛直方向の加速度を計測した. 各橋 梁の大きさ・形式によるパラメータ値への影響を評価する. 4.実橋応答を用いた検証

計測した加速度応答から振動数を推定すると,応答により 検出されないものがあった.これは応答の励起状態が原因 である考え,交通振動と常時微動にわけて考えた.鋼ラン ガー橋の交通振動と常時微動の加速度波形を図4と5に示 す.このような応答を用い,各ケースで適当であると考え るパラメータ値について検討を行った.

4.1初期モデル次数による影響

初期モデル次数を変えたときの振動数への影響から、交 通振動と常時微動について適当であると思われる値を求め た.鋼ランガー橋の交通振動の応答に関して数パターン検 証した結果の一例を図6に示す.10Hz以上では、パワース ペクトルにピーク値が検出されなかったため、図6では検 証対象外とした.初期モデル次数が小さいとパワースペク トルのピーク値付近に検出される振動数が少なく、初期モ デル次数が大きいとパワースペクトルがピークを示してい ない振動数帯にも振動数が検出された.パワースペクトル がピークを示している振動数帯域に推定された振動数にお けるパラメータ値を選定し、数パターンの中で最も多くピ ーク値と一致するパラメータ値を適当であるとした.対象 とした3つの橋梁に関して同じように検討を行った. 4.2特異ベクトル長による影響

上記と同様にパラメータ値を変えたときの振動数への 影響を評価した.鋼ランガー橋の交通振動の応答に関して 数パターン検証した結果の一例を図7に示す.図6と7の 適当であると考える値を青枠で示し,求めた値を表1に示 す.初期モデル次数は特異ベクトル長の2倍以上であった. 5.まとめ

本研究では実稼働モード推定手法の確立に向けて,実応 答を用いた際の計算パラメータが同定結果に与える影響を 評価した.橋梁形式による適当であると考えるパラメータ 値に大きな差異がないことを確認した.

本研究は、限定的な対象ながら、実稼働モード推定を実 用する際に課題となる計測・計算条件の適切な設定方法に 関する試行的な検討結果を示すものであり、構造モニタリ ングによる自動損傷検知の実現へ向けて、一つの知見が得 られたと考える.

参考文献

1) 西川ら:実稼働モード推定のための構造同定条件に関する解析的検討,構造工学論文集 Vol.62A, 2016.

表1 適当な範囲のまとめ

対象橋梁	振 動 種 別	初期	特異
		モデル次数	ベクトル長
鋼ランガー橋	交通振動	40	26
	常時微動	70	24
三径間連続	交通振動	50	22
箱桁橋	常時微動	70	22
多径間連続	交通振動	$70 \sim 80$	$22\sim 24$
箱桁橋	台風時	$60 \sim 80$	24