九州大学大学院 学生会員 〇牟田 諒平 (株) エスイー 正会員 野澤 忠明 (株) 大塚社会基盤総合研究所 フェロー 大塚 久哲 九州大学大学院 正会員 崔 準祜

1. はじめに

近年,部材断面の縮小による死荷重の低減,施工の省力 化,建設・維持管理コストの削減が期待されている超高強 度繊維補強コンクリート(以下,'PVA-UFC'と表記)の 使用実績が増加している.こうした超高強度材料を構造物 に適用するにあたっては,超高強度材料の力学的特性や超 高強度材料を用いた部材の耐力確認実験等を行う必要があ るが,実験事例が少なく,その設計手法が確立されていな い現状である.本研究では,過去に実施した超高強度材料 を用いた RC 柱部材の正負交番載荷実験¹⁾に対し,RC 柱部 材の履歴モデルとして広く使用されている材料構成則を用 いて三次元 FE 解析を実施し,荷重-変位履歴,ひび割れ状 況,鉄筋降伏状況について再現性を検討した.

2. 供試体及び解析の概要

図-1に解析モデルを示す.解析ソフトは、非線形有限要素解析ソフトFINAL (ver.11.2)を利用した.コンクリートはソリッド要素、主鉄筋および帯鉄筋は線材要素としてモデル化した.各検討ケースおよび材料試験結果を表-1に示しており、解析でも同様の材料特性を用いている.実験では、初期軸力として軸応力 1.0N/mm²を与え、主鉄筋ひずみが初めて降伏ひずみを超えたときの変位をδyとし、1δ yおよび2δyは3回、3δyおよび4δyは2回、5δy以降は1回ずつの繰り返し載荷を行っており、本解析では実験

		No.1	No.2	No.3	No.4	
コンクリート	種類	普通	PVA-UFC	普通	PVA-UFC	
	圧縮強度(N/mm ²)	41.2	143.9	36.3	154.0	
	ヤング係数(N/mm ²)	32100	48000	33000	49500	
主鉄筋	種類	SD345	SD345	USD685	USD685	
	降伏強度(N/mm ²)	392.0	405.0	716.0	760.5	
	ヤング係数(N/mm ²)	200000	198000	200000	200000	
帯鉄筋	種類	SD345				
	降伏強度(N/mm ²)	399.0	395.0	395.0	399.0	
	ヤング係数(N/mm ²)	200000	195000	195000	200000	

表-2 1δy, 降伏点剛性, 降伏耐力, 最大耐力

		No.1	No.2	No.3	No.4
1δy(mm)		20.0	13.5	34.5	20.0
降伏点剛性 (kN/mm)	実験	5.19	8.36	5.07	7.11
	解析	6.38	9.67	5.98	10.85
降伏耐力 (kN)	実験	100.4	113.3	175.4	174.9
	解析	126.8	130.3	207.1	216.5
最大耐力 (kN)	実験	115.9	143.8	201.8	236.9
	解析	130.4	140.5	207.1	251.4

と同様な載荷条件を与えた.

材料構成則については、普通の強度を有する RC 柱部材 に対して広く用いられているものを採用することとし、コ ンクリートの圧縮応力とひずみの関係および圧縮軟化特性 は修正 Ahmad モデルを用い、コンクリートの引張応力とひ ずみの関係は出雲らのモデル (c=0.8)を用いた.また、 コンクリートのひび割れ後のせん断伝達特性は長沼モデル を考慮してモデル化を行った.鉄筋については、Ciampi ら により提案された修正 Menegotto-Pinto モデルを使用した.

3. 解析結果

3.1 荷重-変位関係

各検討ケースにおいて解析により得られた荷重-変位履 歴応答と実験で得られた履歴応答を比較した結果を図-2 に示す.また,**表-2**にはNo.1~No.4の1 δ y,降伏点剛性, 降伏耐力,最大耐力を示す.ここで,降伏点剛性は原点と 1 δ y点を結んだ線の勾配とした.

表-2より全てのケースにおいて,解析の降伏点剛性およ び降伏耐力が実験値を上回る結果となったが,最大耐力値 については比較的精度良く再現できた.解析の降伏点剛性 および降伏耐力が実験値より大きくなったのは,実験の変 位測定における誤差や,解析ではコンクリートと鉄筋が完 全付着であると仮定してモデル化していたため,実験より 剛な挙動を示していたことが原因と考えられる.

3.2 損傷状況

図-3 に No.1~No.4 の最大耐力時におけるひび割れ分布 状況の比較を示す. ここで左図が実験時でのひび割れ,右 図が解析でのひび割れ分布である.全ての解析ケースにお いて,水平方向のひび割れおよび基部付近の鉛直方向のひ び割れを概ね再現できていると思われる.一方, No.3 にお いては,基部から柱の中央部に至るまでの損傷個所が実験

表-3 各ケースの鉄筋降伏荷重

に比べ解析の方で多く現れており,再現性が乏しい.

3.3 鉄筋降伏時および鉄筋降伏後の状況

表-3 に基部から 150mm 離れた断面(C 断面)と,基部 から 50mm 離れた断面(D 断面)における鉄筋降伏時の荷 重を示す.実験と解析の鉄筋降伏時の荷重を比較すると, 全てのケースにおいて各断面の鉄筋降伏時の荷重を概ね再 現できた.また,図-4に実験と解析の包絡線と各断面の鉄 筋降伏を示す.普通コンクリートを使用した No.1 と No.3 においては,実験では鉄筋降伏後にすぐ降伏荷重を迎える のに対し,解析では鉄筋降伏後しばらく耐力が上昇してか ら降伏した.また,PVA-UFCを用いた No.2 と No.4 におい ても鉄筋降伏後の実験と解析の骨格曲線が異なっており, こうした両者の違いは鉄筋の付着性やコンクリートの材料 構成則の影響によるものと考えられる.また,No.3 の解析 では,降伏後に靱性が乏しく,実験に比べ剛性低下が早く なっており,上述した No.3 の損傷状況の違いはこうした鉄 筋降伏後の両者の挙動が異なっていたためと考えられる.

4. まとめ

本研究では,超高強度材料を用いた RC 柱部材の正負交 番載荷実験の3 次元 FE 解析による再現性を調査した.荷 重-変位履歴を比較すると,全てのケースにおいて解析の降 伏点剛性および降伏耐力が実験値を上回る結果となったが, 最大耐力については比較的精度良く再現できた.一方,損 傷状況および鉄筋降伏後の履歴においては,実験と解析で 差が見られており,今後鉄筋の付着性やコンクリートの材 料構成則に着目し更なる検討を行う予定である.

参考文献

1) 崔準祜,牟田諒平,野澤忠明,大塚久哲:超高強度材料 を使用した RC 柱部材の耐力および変形性能確認実験,コ ンクリート工学年次論文集, Vol.37, No.2, 2015