CO2 注入流量の違いによる CO2 飽和度の変化に関する実験的研究

九州大学工学部	学生会員	〇今里	光紀	九州大学大学院	正会員	三谷	泰浩
九州大学大学院	正会員	池見	洋明	九州大学	非会員	北村	圭吾
九州大学大学院	学生会員	本田	博之	九州大学大学院	学生会員	高木	進之介

1. はじめに

CO₂地中貯留(CCS)は、CO₂排出量を削減する有効 な技術の1つとして注目されている。CCSにおいて注 入した CO₂が岩盤内にどのように貯留されるか、さら には、その貯留量の評価を行うことが重要となる¹⁾。そ のために、CO₂注入過程でのX線CTや弾性波速度、電 気インピーダンスの測定などの方法を用いて様々な研 究が進められている。しかしながら、CO₂がどのように 岩盤中に貯留され、飽和が進行するのかを正確に把握 するための方法は、現状では確立されていない。

そこで本研究では、ベレア砂岩を用いて、CO2注入流 量を変化させ、弾性波速度および電気インピーダンス を同時に計測し、岩石中の CO2 飽和度の変化を推定す る。

2. 実験システム

試験体は直径 3.5 cm, 高さ 7.0 cm の円柱形に成形し たベレア砂岩(間隙率:18.1%,単位体積重量:2.55 g/cm³) を用いる。試験体には,その中央断面の CO₂ 飽和度を 計測するために,インピーダンス測定用の電極,弾性波 速度測定用の端子を Fig. 1 のように取り付ける。

Fig.2に実験システムの概要図を示す。実験では、地 下深部(約1,000m)の貯留層と同等の温度・圧力条件 (拘束圧:15 MPa,温度:38℃)を再現する。この条件下 で CO₂ は超臨界状態となる。また、試験体は 0.1 wt%-KCI 溶液であらかじめ飽和させる。CO₂ 飽和度は CO₂ 注入流量に影響を受けるため²⁾、CO₂ 注入流量を 7 段 階(0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0 mL/min)に変化させ、 試験体の上下端の差圧が定常となった際の弾性波速度 およびインピーダンスを測定する。

3.実験結果および考察

CO₂注入後,定常となった際の各 CO₂注入流量にお ける差圧を Fig. 3 に示す。図に示すように,CO₂注入流 量の増加にともない,差圧は上昇することがわかる。

次に、CO₂の注入流量と弾性波速度の関係をFig.4に 示す。注入流量の増加にともない、弾性波速度は流量 が2.0 mL/minまでは急激な速度低下が見られるが、2.0 mL/minより大きな流量では、顕著な速度変化は見られ

Fig. 2 Schematic diagram of experiment system.

ない。これは試験体中央で CO_2 注入流量が 2.0 mL/min までは CO_2 が充填しきれていないが、2.0 mL/min を超 えると、大きな流量では試験体中央断面までは CO_2 が おおよそ充填していると推測できる。

さらに、各 CO₂注入流量における Cole-Cole 図を Fig. 5 に示す。インピーダンスの抵抗成分 (Z') を X 軸,キ ャパシター成分 (Z'') を Y 軸に表す。CO₂注入流量を 0.1 mL/min に設定し注入を開始すると、インピーダン スの抵抗成分が(Z', Z'')=(2.2,-0.1)から(Z', Z'')=(3.0,-0.1) と増加する。また、キャパシター成分も(Z', Z'')=(1.0,-0.65)から(Z', Z'')=(1.4,-0.9)と増加している。その後も 徐々に 2 つの成分とも増加しており、このことからも CO₂ の注入流量の上昇にともない、CO₂ 飽和度が上昇 していると考えられる。

これらの実験結果から岩石中の CO₂ 飽和度を求める。 CO₂ 飽和度と弾性波速度の関係式は式(1)に示す Gassmann の式³を用いる。

Gassmann の式:
$$V_{p=}\sqrt{\frac{K_{eff} + \frac{4}{3}G}{\rho_{eff}}}$$
 (1)

ここで、 V_p は弾性波速度、 K_{eff} は飽和された岩石の体積 弾性率、G は剛性率、 ρ_{eff} は飽和された岩石の密度であ る。また, K_{eff}は以下の式で表される。

$$K_{\rm eff} = K_{\rm dry} + \frac{(1 - \frac{K_{\rm dry}}{K_{\rm min}})^2}{\frac{\phi}{K_{\rm fl}} + \frac{1 - \phi}{K_{\rm min}} + \frac{K_{\rm dry}}{K_{\rm min}^2}}$$
(2)

ここで, *K*_{dry}, *K*_{min}, *K*_{fl}はそれぞれ乾燥状態, 岩石構 成鉱物, 間隙流体混合物の体積弾性率を表す。

 CO_2 飽和時の ρ_{eff} は次式で表される。

$$\rho_{\rm eff} = \rho_{\rm dry} + \phi \left\{ (1 - S_{\rm w})\rho_{\rm co_2} + S_{\rm w}\rho_{\rm w} \right\}$$
(3)

ここで、 ϕ は岩石の空隙率、 ρ_w 、 ρ_{co_2} 、 ρ_{dry} はそれぞ れ水の密度、 CO_2 の密度、乾燥状態の岩石の密度である。

CO₂ と水の混合形態には 3 つの混合形態 (Voight, Ruess, Hill) があり⁵, それぞれの *K*_{fl}を算出する。これ らの式は以下に示す通りである。

Voight model : $K_{\rm fl} = K_{\rm w} \cdot S_{\rm w} + K_{\rm CO_2} \cdot (1 - S_{\rm w})$ (4)

Reuss model : $K_{\text{fl}} = \frac{S_{\text{w}}}{K_{\text{w}}} + \frac{1-S_{\text{w}}}{K_{\text{CO}_2}}$ (5) $\{K_{\text{w}} \cdot S_{\text{w}} + K_{\text{CO}_2} \cdot (1-S_{\text{w}})\} + \frac{S_{\text{w}}}{K_{\text{w}}} + \frac{1-S_{\text{w}}}{K_{\text{CO}_2}}$

Hill model :
$$K_{\rm fl} = \frac{(K_{\rm W} - S_{\rm W} + K_{\rm CO_2} - (1 - S_{\rm W})) + K_{\rm W} + K_{\rm CO_2}}{2}$$
 (6)

弾性波速度の測定値と式(1)から式(6)を用いて, 3つの混合形態それぞれの CO₂ 飽和度を求める。

さらに, **CO**₂ 飽和度とインピーダンスとの関係につ いては式(7)に示す Archie の式 ⁴を用いる。

Archie
$$\mathcal{O}$$
式 : (S_w)^{-m} = $\frac{R_t}{R_0}$ (7)

ここで, *S*_wは水の飽和度, *m* はこう結係数, *R*_t, *R*₀は CO₂, 塩水飽和時の比抵抗である。

式(1)から求められた3つの混合形態それぞれのCO₂ 飽和度を算出した結果と,式(7)から求められたCO₂ 飽和度を比較した結果をFig.6に示す。その結果,イン ピーダンスの測定結果により求めたCO₂飽和度の変化 と弾性波速度から求めたCO₂飽和度の変化のうちCO₂ が均質に充填されているとされるReuss modelで算出さ れたCO₂の混合形態が最も近い結果が得られた。イン ピーダンスから算出したCO₂飽和度は約20%となり, 注入流量を2.0 mL/min以上にすることで試験体空隙の 約20%,試験体全体積の約4%がCO₂に置換されてい ると考えられる。

4. おわりに

本研究では、弾性波速度および電気インピーダンスを 計測し、そこから得られるデータを基に各 CO₂ 注入流 量の違いによって飽和度がどのように進展するか検討 を行った。その結果、CO₂ の注入流量 2.0 mL/min を超 えると CO₂ による飽和の進行がほぼ完了することが明 らかになった。

Fig. 6 Change of estimated CO₂ saturation.

参考文献

- Ziqiu Xue et al., Application of Rock Physics Study to Seimic Monitoring of Injected CO₂ in Geological Sequestration, *Journal* of *Geography*, 117, pp734-752, 2008.
- 松岡俊文他, Lessons from the First Japanese Pilot Project on Saline Aquifer CO₂ Storage, *Journal of Geography*, 117, pp734-752, 2008.
- Gassmann, F., 1951., Über die elastizität poröser medien: Vierteljahrss-chrift der Naturforschenden Gesellschaft in Zurich 96, pp1-23.
- 4) Shinichi Takakura et al., *Archie's formulas and equivalent parallel circuit model for rock resistivity.*
- 5) Wood, A.W., 1955, A Textbook of Sound. The MacMillan Co., New York.