水俣湾におけるレーザー式浮遊懸濁物粒径分布・濃度計による 海水中浮遊懸濁物の粒度分布の測定精度に関する検討

九州大学 学生員 谷中敬亮 九州大学大学院 学生員 松本賢 フェロー 矢野真一郎 長崎大学大学院 正員 多田彰秀 環境省国立水俣病総合研究センター 松山明人

1. はじめに

水俣病の発症が公式に確認されてから今年(2016 年)で 60 年経つが,未だに多くの途上国で環境中に 放出された水銀による人体への被害が懸念されてい る.我々の研究グループでは,過去に重大な水銀汚染 が起こり,現在も微量ではあるが自然界のバックグ ランド濃度より高い水俣湾を研究対象とし,世界の 海洋水銀汚染問題の解決に貢献することを目的に水 銀動態の現地調査と数値モデル開発を行っている.

数値モデルを開発するために必要な基礎データの 取得を目的として、10年以上にわたり海水中水銀濃 度の現地モニタリングを毎月行ってきた.数値モデ ルでは、海水中水銀を溶存態と懸濁態(粒子状態)に 分けて記述する必要がある.このうち懸濁態は主に 土粒子などへ付着した水銀が再懸濁して浮遊してい ると考えられている.その単位海水中濃度は浮遊懸 濁物(SS)濃度やSSの粒径に依存していると考えられ, SS 粒度分布や SS 比表面積に対する相関性が確認さ れている[松本ら(2015)].

本研究では、松本らにより用いられた LISST-100X の測定データの信頼性をより高めるために、この機 器の測定方法やデータ精度について詳細に検討し、 測定データの信頼性を評価することを試みた.

2. 現地観測の概要

LISST-100X(Sequoia Scientific 社製)は、現場の水中 において SS の粒径スペクトルを直接観測可能にし た唯一のレーザー回析式測定器である.現場で直接 測定を可能にしたことから、採水サンプルによるフ ロックの崩壊などが生じず、正確な粒径分布を測定 できる.しかし、現場型であるため実験室で用いられ ている同様の測定機器と比べると、測定できる粒径 のレンジが狭い.本研究で使用したのは、測定可能な 粒径レンジが 2.5~500µm のものであり、その範囲を 対数スケールで32分割し各分画の体積濃度を測定す る.

今回の観測では、2015 年 7 月 6 日から 18 日までの 2 週間に隔日で、図-1 に示す観測地点 Sta.1~3の3 地点において、 水銀濃度と SS の粒度分布の鉛直

図-2 7月10日 Sta.1(1m)の粒度分布 (バーは標準偏差)

3 地点において, 水銀濃度と SS の粒度分布の鉛直 構造を測定した.ただし,台風の影響,ならびに機器 の不調により 6, 8, 12, 16 日は LISST の測定なしで あるため,計 3 回 (7 月 10, 14, 18 日)のみ LISST の測定を行った.サンプリング間隔は 1 秒とし,各 層 20 個以上のサンプリングができるように 1m ごと に約 20 秒静止させ,海底に向かって下ろしながら連 続測定を行った.

3. 観測結果と考察

得られたデータには、水表面付近で大きな分散が みられ、海底に近づくにつれて分散が小さくなる傾 向が見られていた.また、図-2 に一例を示すように 32 個の分画のうち、上から 2 つ(レンジの中央値 391

図-3 7月10日のSta.1における中央粒径分布

図-4 7月14日のSta.1における中央粒径分布

図-5 7月18日のSta.1における中央粒径分布

μm, 462μm)が大きな値を示しており,特に水表面付 近でこの傾向が強く見られた.

このように異常値が疑われるデータが含まれてい たことから、以下の手続きによりデータ整理を行っ た.まず、測定データについて、32 分画中に0を含 むもの、もしくは受光強度が弱いものをエラーとみ なし除去した.次に、各分画の測定誤差は正規分布に 従うと仮定して、標準偏差のを求めて偏差が 3のを超 えるものを含んだデータを削除した.これにより、基 本的には測定誤差を除去できていると考えられる. 残ったデータから各層毎に中央粒径を算出したとこ ろ、水表面付近は 300µm を超え(図-3,4,5)、海底付 近の値を大きく上回った.そこで、2のを超えるもの を削除してみたが、水表面付近の分散、ならびに中央 粒径が小さくなる傾向が見られたものの、飛躍的な 改善は見られなかった(図-3,4,5).

391µm, 462µm の分画が異常値を示すことが多い ことから、これらを用いない検討を行った(図-3.4.5). 中間層に見られていた粒径の大きい層が, 処 理後は小さくなった.大きい分画の測定値には,水表 面付近に混入する気泡や,砕波などによる海面での 光の乱反射などに起因する受光状況の不安定さが原 因でエラーが多いと考えられている[加藤ら(2002)]. よって, 大粒径分画の除去により, 測定範囲が狭まり 機器の能力を発揮できなくなるが、通常想定される 海水中 SS の粒径はカバーできることから、大きな問 題はないと考えられる.同時に行った CTD 観測結果 から濁度やクロロフィルとの相関も調べたが、中央 粒径との相関はなかった.よって,植物プランクトン の発生などはなかったと見られ、機器がもつ固有の 誤差であったと考えられることから,本手順により ある程度正確な SS 粒径を評価できると考えられる.

4. まとめ

LISST-100X の測定データについて,補正方法を検 討し,ある程度の精度が確保できるようになった. 今後は,より精度を高めるために実験などによる実 証を行い,補正方法を確立したい.また,精度の高い 粒径データを用いて,懸濁態水銀との関係などを評 価したい.

[謝辞] 本研究は科研費基盤研究(B) (24360200) により実施 された.

[参考文献] 1)松本ら(2015): 平成 27 年度土木学会年次講演 会概要集, II-136.,2)加藤ら(2002): 海岸工学論文集, 49, 436-406.