津波避難ビルの安全性評価

九州大学大学院	学生会員	鍋倉昌博
九州大学大学院	正会員	浅井光輝

1. 目的

2011年3月11日に発生した東北地方太平洋沖地震 による津波は、多くの土木構造物を崩壊させた、今 後危惧されている巨大津波が発生する前に、沿岸地 域の防災・減災技術の早急な見直しが必要となって いる.現在,迅速な避難を困難とする人々の一時的 な避難のための施設として、津波避難ビルの選定が 各地域で推進されている. なお,構造物に作用する 津波の流体力は、ピロティなどの低層階での開口を 設けることにより軽減する事ができるものの, 開口 部に漂流物が捕捉された場合には津波波力が増大す る危険性があり、また漂流物自体の衝突確率を増加 するなど負の影響も考えられる. そこで本研究では, 津波避難ビルの安全性を多面的に評価するため,津 波時に作用する流体力だけでなく漂流物の衝突に対 しても同時に評価し、ビルの開口部・津波進行方向 の影響等を数値シミュレーションにより評価するこ とにした.

2. 解析手法

2-1 SPH 法

解析手法は、形状変化の激しい流れの 3 次元問題 の解析に適している粒子法の一種である SPH (Smoothed Particle Hydrodynamics)法を採用した. SPH 法は、連続体を有限個の粒子に離散化し、対象とす る粒子の影響半径内に存在する近傍粒子に重み関数 をかけて、一種の重み付き平均として近似する手法 である(図-1). 粒子 j の質量 m^{j} , 密度 ρ^{j} とし、重み 関数を W, 影響半径を h とすると、物理量 f(x) は以 下の式で表される.

$$f(x) = \sum_{j=1}^{N} \frac{m^{j}}{\rho^{j}} f(x) W(x - x^{j}, h)$$
(1)

流体運動の支配方程式としては、ナビエ・ストー クス方程式と質量保存則を解く.また、本解析では SPH 法の中でも圧力を陰的に、速度を陽的に解くと いう特徴を持ち、非圧縮性流体に適した解法である 安定化 Incompressible SPH(ISPH)法を採用した.これ により、物理的には瞬間的に微圧縮性を許容するこ とで、安定した圧力分布を得ることができると同時 に、長期的な体積保存性にも優れた結果を得ること ができる.

2-2 流体剛体連成解析

境界面での力の伝達として基本物理に従って流体 と剛体問題を連成する定式化に,田邊ら⁽²⁾によって

図-1. SPH 法の概念図

提案された粒子法の安定化手法および仮想マーカー を用いた高精度境界処理を加えた.

剛体の重心位置ベクトル X は全体座標系の基底ベ クトル $e^{(0)}$ を用いて

$$X = \sum_{I=1}^{3} X^{(I)} e^{(I)}$$
(2)

と表すものとし、次の運動方程式に従う.

$$M\frac{d^2 X}{dt^2} = M\frac{dV}{dt} = F$$
(3)

ここで、右肩の括弧つきの数字は各座標軸の成分で あることを明示する.また *M* は剛体の質量、*F* は 剛体に作用する外力ベクトル、*V* は剛体の速度ベク トルとする.また、剛体重心周りの回転運動に関す る運動については、慣性テンソル *I* を用いて次式に より与えられる.

$$I\dot{\Omega} + \Omega \times I\Omega = M \tag{4}$$

$$I = \sum_{I=1}^{3} \sum_{J=1}^{3} I^{(I,J)} e^{(I)} \otimes e^{(J)}$$
(5)

$$\boldsymbol{\Omega} = \sum_{I=1}^{3} \Omega^{(I)} \boldsymbol{e}^{(I)}, \quad \boldsymbol{M} = \sum_{I=1}^{3} M^{(I)} \boldsymbol{e}^{(I)}$$
(6)

ここで Ω は角速度ベクトル, M は剛体に作用する モーメント, Ω の上に付いているドットは時間微分 を示す.また×、 \otimes はそれぞれ外積およびテンソル 積を示す.最終的に、剛体の速度・角速度が定まれ ば剛体粒子上での速度ベクトル ν ,および位置ベク トルx は次のように更新して剛体の動きを表現し ている.

$$\boldsymbol{v}_{i} = {}^{n}\boldsymbol{V} + {}^{n}\boldsymbol{\Omega} \times \left({}^{n}\boldsymbol{r}_{i} - {}^{n}\boldsymbol{R}\right)$$
(7)

$$^{+1}\boldsymbol{x}_{i} = {}^{n}\boldsymbol{x}_{i} + {}^{n}\boldsymbol{v}_{i}\,\Delta t \tag{8}$$

ここで, **r** は剛体粒子の位置を, **R** は剛体の重心 位置をそれぞれ示す. これらの式における外力・モーメントの評価に関 しては文献⁽²⁾を参照されたい.

3. 解析例

3-1 解析概要

解析モデルの概要を図-2に、構造物のモデル概要 を図-3に示す.構造物モデルは両者ともに窓開口条 件は等しく、ピロティ構造物は低層部をピロティに 変換したモデルとなっている.漂流物は図-4に示す 漁船規模の船を想定したモデルを使用し検討するこ とにした.また構造物の前面に漂流物となる船を配 置し、その背後に津波を見立て、初速 5m/s を付与し た水塊を設定した.本稿では、船の初期位置を構造 物中心軸に配置した際の結果を示す.構造物モデル としては、ピロティ開口部があるモデルと開口部が ないモデルの2種類を比較検討した.解析条件とし て、粒子間隔は 0.20m、総粒子数約 1500 万、時間増 分 0.001 秒、実時間 40 秒とし、理化学研究所の京を 用いて解析を行った.

3-2 解析結果

図-5 は流入開始から 11 秒後の解析結果をモデル ごとに比較している. ピロティモデルでは津波はピ ロティ内部に浸水し,その流れとともに移動した漂 流物は構造物と衝突した.一方で,ピロティなしモ デルでは構造物前面で発生する反射波の影響から衝 突は生じなかった.

また、本解析におけるビルに作用する津波波力を 測定した結果を図-6に示す.このグラフは津波進行 方向と同方向の合力を各時間毎にプロットしたもの である.同図よりピロティ開口部を有する場合には、 津波波力を低減できていることが分かった.しかし その一方で、図-5に示すようにピロティ開口部があ ることで、漂流物が構造物に衝突する危険性が上が ることを確認した.

4. おわりに

本研究では,SPH 法による流体シミュレーション コードに剛体解析機能を追加し,漂流物の衝突の影 響までを考慮し,津波避難ビルの安全性について検 討した.現時点では,限られたケースによる解析結 果にとどまっているため,今後は解析例を増やし, 統計的に調査する予定である.また,漂流物の衝突 時の衝突力についても定量的に評価していく予定で ある.

参考文献

(1) 浅井光輝,合田哲郎,小國健二,磯部大吾郎,樫山和男,一色正晴,安定化 ISPH 法を用いた津波避難 ビルに作用する流体力評価,応用力学論文集, pp649-658,2014

(2) 田邊将一,浅井光輝,宮川欣也,一色正晴:SPH 法による流体剛体連成解析とその橋梁流失被害予測への応用,応用力学論文集,pp329-338,2014

