1. はじめに

粘質土壌が乾燥する過程で生じる亀裂は、乾燥収 縮亀裂と呼ばれ(以後, Mudcrack と呼ぶ)、田畑や干 潟等の地表面だけでなく、地層中にも散見される. Mudcrackの進展現象は、極めて複雑な挙動を示すこ とから、亀裂発生の力学的メカニズムに関する系統 的な研究例は多くなく、十分に理解されているとは 言い難い状況がある.

Mudcrack に関する既存の研究には、乾燥前に力学 的外乱を与え、亀裂形状自体を制御する研究¹⁾、湿潤 土を線形弾性体とみなし適当な破壊条件を仮定した 数値解析モデルにて亀裂パターンを再現する研究 (単純バネ切りモデル)²⁾、湿潤土の粗粒率が

Mudcrack に与える影響を調査した研究³⁾等がある. しかしながら, 亀裂進展過程, 亀裂進展速度等との 関連性については, 未だ解明されていない. また, Mudcrack は土壌の不均質度合に支配される場合が多 く, 亀裂の規則性や再現性を評価すること自体が困 難である現状もある.

そこで本研究では、Mudcrack パターンの支配要因 として、湿潤土の層厚、粒度、塩分濃度、含水比、 亀裂進展長さに着目することによって、これまで困 難とされてきた Mudcrack の規則性および再現性につ いて検討する.

2. 実験方法

2.1 実験条件

本研究では、最大粒径 425µm のふるいを通過した 国頭まあじと島尻層群泥岩を用いた.炭酸カルシウ ムに関しては粒度調整済の試料を用いた.本研究で 用いた試料の粒度分布を図1に示す.同図より、国 頭まあじに関しては砂分を多く含む試料であり、島 尻層群泥岩および炭酸カルシウムは国頭まあじに比 べ比較的粒度が小さい性質を示すことがわかる.

琉球大学大学院	学生会員	○広瀬 考	全三郎
琉球大学	正会員	松原(-
琉球大学	正会員	原 久夫	₹

混合土の構成を変化させるために,試料に塩分を 混ぜ合わせて実験を行うこととした.試料の初期含 水比は,容器内に流し込むことを考慮し,試料が十 分な流動的挙動を示すように含水比 60%とした.試 料を入れる容器は,フッ素樹脂加工を施してある円 形金属容器(直径 28 cm,厚さ 5.3 cm)とした.また, 実験は,温度 25℃,湿度 40%に設定した恒温器内に て行い,亀裂の進展過程を撮影するために,定点カ メラを恒温器内に設置し,1分間隔でインターバル撮 影を 24 時間連続で行った.また,実験毎に,24 時間 乾燥後の含水比(以下,最終含水比と記述する)を 測定した.試料の層厚は 10 mm および 15 mm の 2 パ ターンとし,塩分濃度に関しては,0%および 10%の 2 パターンで行った.

2.2 各種検討事項

本研究での検討項目を以下に示す.

- ① 亀裂パターンのフラクタル次元
- ② 最終亀裂パターンと最終含水比との関連性
- ③ 経過時間と亀裂進展長さの関連性

①に関しては、Mudcrack のフラクタル次元(ハウス ドルフ次元)を求めるために、ボックスカウント法 を適用する.この手法は、様々なサイズ(d)の正方 格子で画像を区切り、対象物が含まれる正方格子の 数(N(d))を数えてフラクタル次元を求める手法であ る.そのとき、軸に Log(N(d))と Log(1/d)を取った場 合の直線の傾きがフラクタル次元である.式(1)に一 般式を示す.

$$\log(N(d)) = D\log(1/d) \tag{1}$$

②に関しては、定点カメラにて撮影した画像および 最終含水比をもとに比較検討した。③に関しては、 定点カメラの画像およびデジタル画像処理技術を利 用し、亀裂進展長さを算出した。

3. 実験結果

3.1 Mudcrack パターンのフラクタル次元

本研究では,格子一辺のサイズ *d* が 2 mm, 2.5 mm, 4 mm, 5 mm の 4 パターンを用いてフラクタル次元を 求めた. その結果,フラクタル次元は全ての場合に おいて,約1.1 次元で与えられることがわかった.

3.2 最終亀裂パターンと最終含水比の関連性

試料における24時間乾燥後の最終結果画像を図2, 図3および図4に示す.同図より,Mudblockの面積 は層厚10mmの試料のほうが層厚15mmの試料より も小さいことが確認された.また,この傾向は,塩 分を含んだ場合に顕著であることがわかった.

最終含水比に関しては,試料の層厚が厚いほど最 終含水比が高く,さらに内在塩分が含まれる試料ほ ど,乾燥後も高い含水比を保持することがわかった. 要因としては,塩分がまわりの水分を吸収すること, 内在塩分の結晶化に伴い水分の蒸発が抑制される ことが考えられた.

3.3 経過時間と亀裂進展長さの関連性

経過時間と亀裂進展長さの関係を図5に示す.本 研究では,亀裂が発生してから20分間隔で亀裂進 展長さを測定した.一方,炭酸カルシウムに関して は,亀裂進展が他の土壌に比べて非常に早かったた め10分間隔とした.

図 5(c)より炭酸カルシウムに関しては、塩分の有 無により亀裂進展に明確な違いがみられたが、島尻 層群泥岩(同図(b))および砂分が多い国頭まあじ(同 図(a))については、明確な違いがみられなかった. これは、図1に示すように、粉体の粒度が関係して いると考えられ、粒径が小さな領域に集中している 試料ほど、塩分濃度の影響が大きく現れることが分 かった.

4. おわりに

Mudcrack に関しては、高レベル放射性廃棄物の 上側に敷く土壌に亀裂が発生し、放射性物質の拡散 が懸念されている等、近年、様々な問題が指摘され ている.本研究は、このような問題に対する基礎デ ータのひとつとして役立てることが可能であり、本 研究を応用することで、Mudcrackの発生を防ぐ新た な手法の開発等が期待できる.

参考文献

- Nakahara, A. and Matsuno, Y.: Imprinting memory into paste to control crack formation in the drying process, J. Stat. Mech.: Theory Exp. P07016, 2006.
- 2) Kitunezaki, S.: Crack propagation speed in the drying process of paste, *J. Phys. Sco. Jpn.* 78, pp.064801, 2009.
- 3) 伊藤寛之,宮田雄一郎:マッドクラックのパターン形 成実験,地質学雑誌 104 巻, pp.90-98,1998.

