破損遮水シート下部における高吸水膨潤性不織布の止水性能の検討

熊本大学 正会員 ○椋木俊文 学生会員 福島淳平 前田知子 東洋紡 非会員 川中直樹 日本エクスラン工業株式会社 非会員 赤木佑輔

1. はじめに

廃棄物最終処分場,特に放射性廃棄物を取り扱う処分場 では,漏洩物の危険性の高さからさらなる漏水のリスク低 減,つまりは拡散防止が必要と考えられる¹⁾.そこで本研 究の目的は,図1に示すように埋立廃棄物処分場における 遮水シート破損部直下の止水を目的として,高吸水膨潤性 繊維(以下ランシールと呼ぶ)を使用したジオテキスタイ ルであるボランシールの止水性能を評価することである. 今回,現状データの少ない面内方向(遮水シートに対して 面方向)の止水性能ついて,高吸水膨潤性繊維を複合化し た水膨潤シートである「ボランシール」(東洋紡㈱製)²⁾を 例に挙げて調査と定量化を試みることにした.

2. 実験概要

図2は、漏水実験装置の概要図である.この実験では、 埋立廃棄物処分場底部遮水シート施工後の破損を想定し ている.そのため、上載圧及び破損個所に与えられる位置 水頭は、汚水集水管の直径程度と言える.これを50cmと 仮定して、本実験では、破損部上部に50cmの定水位位置 水頭と与えた.またランシールと遮水シートの接触条件が 拘束圧の違いによる影響を議論するために遮水シートと してアクリル板を使用した.初期状態として漏水個所には、 栓をし、実験開始と同時にその栓を抜くようにした.

漏水現象を観察するために、ランシール下部底面もアク リル板を敷設した.使用する水に黒色のインクを混入し、 また定位置よりビデオ撮影を実施することにより、経過時 間ごとの漏水状況を観察した.表1は、ビデオ撮影の時間 をまとめている.

3. 一次元水拡散モデルの提案

ランシールの吸水挙動は、水を吸収するとはじめ急速に 体積膨張し、その膨張速度は時間とともに小さくなる.す なわち、ランシールの単位体積当たりの水の吸水現象は、 圧密の逆現象に捉えることができる.一般に移流拡散型の 偏微分方程式の厳密解の一つに、OGATA-BANKの式があ る³⁾. ランシールの吸水現象では移流項は無視すると、後 述の境界条件においてOGATA-BANKの式は式(1)のように 表示できる.

С	x	(1)
=	erfc((1)
c_0	$2(D * t)^{\frac{1}{2}}$	

D: ランシール内水拡散係数

 $D = m_v \rho_b q$

- *m_v*: ランシールの膨張係数 (m²/kN)
- *ρ_b*: ランシールの乾燥密度 (kN/m³)
- q: ランシールの単位時間当たりの吸水体積 (m³/s)

図1 高級性膨潤不織布の適用想定図

erfc は誤算関数、 c_0 :定常状態におけるランシールの単位体 積吸水質量 c:各タイムステップ(t)におけるランシールの単 位体積吸水質量 x:一次元空間座標である。式(1)は, t=0, x=0

の時 $c=c_0$ t>0, x=0 の時 $c=c_0$ $t>0, x=\infty$ の時c=0 で拡 散現象のみ考慮した時に得られる解である. この境界条件 は、今回実施する実験と等価で仮定できる. またランシー ルの単位体積吸水量は測定できていないが、吸水箇所が写 真撮影できることから、式(1)の解が0になる空間座標と画 像から得られる吸水領域を比較する.

4. 結果と考察

(2)

4.1 漏水実験結果

図4は、使用した高吸水性膨潤不織布の光学顕微鏡写真 である.吸水前後の繊維を比較すると、吸水直後は、繊維 の直径は5-10倍大きくなっていることが分かった.図5は、 図2に示した実験装置よりアクリル越しに撮影した鉛直拘 束圧7kPa時および24時間後の止水状況を示した写真であ

図4 高吸水性膨潤不織布の光学顕微鏡写真

る。吸水膨張箇所が遮水シートとの接触条件を模擬したア クリル板に密着しているため、1日経過してもわずか17mm までしか水が拡散していない.図6は、図の止水領域の写 真を拡大し、ランシールのカラーを最高輝度値として各画 素の輝度値を正規化して止水分布を示したものである。画 像では、黒色(正規化輝度値が小さい)ほど止水できてい ることを意味する。24、50時間後の輝度値は17mm でほぼ 一定であり、193 時間後には止水領域が 28mm まで拡大し ている。これは、ランシールの高吸水性能ゆえに漏水個所 の水を吸水現象が作用するためで、それによって143時間 (約6日)で直径方向に11mm水が収束しながら拡散して いると言える。図7は、止水領域を新円と仮定した時の各 拘束圧,各位置水頭における止水領域の時間変化である. 位置水頭がわずか5.0cmの場合、止水領域は5日で定常状 態に至っている.低拘束圧下では、鉛直方向拘束圧依存性 は明確ではないが、高膨潤性であることは、膨潤できる空 間が存在するとそこに吸水性能が卓越するため、拘束圧の みならずランシールとアクリル板(実際には遮水シート) との位面積当たりの設置面積が、ランシールの止水性能を 発揮するための重要ファクターであると考えられる。

4.2 水拡散シミュレーションの試み

図8は、式1を用いて鉛直拘束圧7kPaにおいて、与える 水頭がそれぞれ 50.0cm における1次元水拡散領域と実験 値との比較を示している.本実験では、ランシール内部の 吸水量は確認できなかったため、止水領域のみの比較とな るが漏水時間が72時間以内の場合、解析値はランシールの 止水性能を過大評価した結果になっているが、193時間で は、定性的に漏水領域を評価できる結果を得た.

5. おわりに

今後は、止水材料としてのランシール適用における潜在 的な能力と問題を評価するために、ランシール下部に地盤 材料が存在する場合などの実験を計画している。

本研究は、平成26年度拠点化計画促進研究開発事業補助 金(公益財団法人若狭湾エネルギー研究センター)により 実施された.ここに謝意を表す.

参考文献

- 清水建設株式会社,株式会社ブリヂストン:水膨張性マット 及び遮水構造並びに遮水構造の施工方法,特開2009-22836.
- 2) 東 洋 紡 株 式 会 社 AP 事 業 部 website, http://www.toyobo.co.jp/seihin/ap/lanseal_f/lanseal_f.html,

図5 拘束圧 7kPa における 24 時間後の漏水状況

2014/10/30アクセス.

 Ogata, A. and Banks, R.B. (1961) Asolution of the differential equation of longitudinal dispersion in porous media. US Geological Survey, Professions paper 411-A.