壁石を含む石橋模型による壁石効果に関する検討

熊本大学工学部 学生会員〇林野 将大,金子 和明 熊本大学大学院 フェロー会員 山尾 敏孝,学生会員 小倉 孟

1. はじめに

著者らは、健全あるいは損傷の有無にかかわらず石橋の健全度評価をするため、石橋のアーチ輪石のみに着目し ての模型により静的・動的載荷実験を実施してきた¹⁾.更に、モデルや接触モデルを用いた解析手法の開発を行 い、模型実験や実石橋の車両載荷実験等の比較を通して手法の妥当性や有効性の検討を行ってきた^{2),3)}.九州に数 多くある石橋を適切に健全度評価し、維持管理して残していくためには、解析手法の確立が急務であり、そのため には未だ未解明な点の多い壁石について解明することが必要である.本研究では、石橋の壁石の働きに着目し、従 来のアーチ輪石模型に円形断面の壁石と内部に砂を充填した模型による載荷実験を行い壁石の挙動の把握を試み た.

2. 模型実験の概要

実験に使用した石橋模型は、既往の実験で使用したアーチ輪石 模型 ²で、支間長 900mm、幅員 270mm、スパンライズ比 0.20 も のを使用し、写真 4 に示すように壁石と内部に砂を詰め、写真 1 に示す形状の壁石を用いた.実際の石橋では四角形状であるが、 模型の製作性を考慮して代用した.なお、壁石を装着した場合の 模型上部の橋長は 1040mm である.本研究では、壁石の効果や挙 動を調べるため、まず、アーチ輪石模型のみに鉛直集中荷重をア ーチクラウン部へ載荷し、その後壁石を装着した模型に鉛直集中 荷重及び 4 等分集中荷重を作用させた.挙動測定には、アーチ輪 石の鉛直変位や壁石の面外変位を変位計により測定し、さらに主 要なアーチ輪石及び壁石の位置でひずみゲージを貼りつけた(図 1、写真 2 参照).変位計の設置位置は図 1(a)に示すようにア ーチ輪石の 7 箇所とした.ひずみゲージはアーチ輪石に 9 箇 所(計 18 枚)(図 1(b))、アーチ輪石の L/4 点上の壁石に 8 箇所(写真 2)、アーチクラウン部に 1 箇所(計 17 枚) 貼付

し、鉛直方向と水平方向のひずみを測定した. 実験方法は、1)アーチ模型の集中載荷(写真3):アーチク ラウン部に載荷板を置き、その上にロードセルをおいてジャ ッキにより集中荷重作用.2)壁石を含む石橋模型の集中載 荷と分布載荷:アーチ輪石の上に壁石を置き、内部に砂を 充填した模型の路面に床版を置き、アーチクラウン部に集

中荷重を載荷した場合と載荷治具により4 等分点に集中荷重を載荷した場合(写真 4)の2ケースについて実施した.作用荷 重はいずれもロードセルを置いて測定し た.写真3-4に変位計を取り付け,壁石に はひずみゲージを取り付けて測定している 様子を示した.

3. 実験結果および考察

今回の試験で得られた3つの試験の最 大荷重は、アーチ輪石のみ模型のアーチク

大荷重は、アーチ輪石のみ模型のアーチク

写真1 壁石の形状

写真 2 壁石のひずみゲ ージ貼付位置

写真3 アーチ輪石のみの模型へ 集中荷重載荷実験の様子

写真4 壁石を有する模型へ 4等分点荷重載荷実験の様子

ラン部の集中載荷試験では、300kg程度で崩壊してしまった.しかし、壁石を付けた石橋模型実験では、集中荷

重の場合 7.8t, 4 等分点集中荷重の場合では 14t でも崩壊することはなかった. なお, アーチクラウン部に集中荷 重載荷させた壁石を有する場合の最大荷重が小さかったのは, L/4 点付近のアーチ輪石に割れが生じたためであ り, これは石材の圧縮方向と堆積方向が一致してなかったことで生じたと考えられる. 模型の用の壁石があり内部 が壽点されていることによりアーチ効果により圧縮力に強い石材が十分な力を発揮したと考えられ壁石の働きが確 認された.

図 2~図 4 は、アーチ輪石の鉛直方向の変位挙動を示した荷重--鉛直変位曲線である.アーチ輪石のみの載荷試 験では、右側の方が左側よりも大きく変位を示した.これはアーチ輪石の組み方や接触にも依存するもので、この 模型は右側が荷重の影響を受けやすい作りになっていた可能性がある.また、荷重を作用させる際、ロードセルの 固定が十分できてなく、偏心載荷の可能性も考えられる.壁石を有する石橋模型の載荷実験では、L/4 点、3L/4 点の浮き上がりを抑えられていることを確認できた.集中荷重載荷及び4等分点集中荷重載荷ともに同じような 変位挙動の様子が見られた.荷重が大きくなるとアーチ輪石に割れや壁石の割れも見られた.

図5と図6は、4等分点集中荷重を11tonまで作用させた時荷重--ひずみ関係を示した.図5は、図1(b)に示す L/4点のA~Cのアーチ輪石における橋軸方向と橋軸直角方向のひずみ変化である.図からわかるように、中央部 アーチ輪石の橋軸方向の圧縮ひずみが大きく、その最大値も120µだったが、橋軸直角方向には引張ひずみが倍の 300µ程度発生していることがわかった.文献1)で用いた同じ輪石で、静弾性係数11500 N/mm²、最大圧縮荷重 時の圧縮ひずみな4000µほどで、引張ひずみは1/30程度と考えると、輪石が割れる可能性を示している.本模型 では圧縮ひずみから考えるとさらに大きな荷重に耐えることも可能かと思われるが、輪石の引張割れが発生するよ うになると思われる.また、11ton前でアーチ輪石の割れが影響したのか軸ひずみに大きな変化が生じていること がわかる.図6は、写真2の壁石①と⑦の水平方向と鉛直方向のひずみ変化を示した.壁石①と⑦の壁石は写真 2を見てわかるように、壁石①は橋面に近く載荷面に近く、載荷用の治具と壁石が直接接触し、かつ、下側の壁石 ときちんと接触していたため大きくなったと考えられる.一方、壁石⑦は他の7つの壁石に囲まれている状態に あり、ひずみがほとんど生じていなかった.今後、ひずみゲージを添付した他の壁石のひずみ変化を詳細に検討

し、応力状況を把握する必要がある.ここには示していないが、最初は伸びていたが 荷重が大きくなると次第に縮んでいく変形 など種々の変形状況が見られた.これは壁 石が周囲の石、治具や輪石などから様々な 力が加えられているからだと考えられる. すべての壁石1つ1つの変形を把握するの は難しいが、今回はL/4 点上の変形の様子 を知ることができ、壁石を付けた場合では 耐荷力が大幅に上がっており、壁石の効果 を確認することができた.

参考文献:

- 藤田千尋,他3名:石アーチ模型による静 的挙動・・・,構造工学論文集,Vol.59A, pp.20-36,2013.3
- 小倉孟,他2名:石アーチ模型の・・・、 第68回年次学術講演会講演概要集(CD-ROM), I-327, pp.653-654, 2013.9
- 3) 宝江沙央里,他5名:朝地橋の車両載荷試 験・・・・,土木学会西部支部研究発表概要集 (CD-ROM), I-6, pp.11-12, 2014.3

