長崎大学 大学院 学生会員 〇本田航 ㈱高速道路総合技術研究所 正会員 岩吹啓史

1.はじめに

膨大なインフラ構造物を効率的かつ効果的に点 検・検査する技術の開発が急務となっている.その ような中で,我々は数年前から遠隔非接触計測が可 能なレーザードップラー速度計¹⁾(以下,LDV)(写 真1)を用いた振動計測に関する研究を行っている. LDV 計測にはレーザ照射ターゲットして再帰反射 用シールを用いるが,設置が困難な場合がある.ま た,通常の計測では一つのターゲットで多方向の振 動計測が困難である.

そこで、本研究では上述する問題点を解決するために、異種レーザ照射ターゲットを用いた新しい振動計測の検討を行った.

2.実橋梁概要

対象実橋梁は,支間長約 35m,橋長 350m,幅員 10mの10径間連続非合成鋼2主桁橋(写真2)であ り,計測対象区間は S4PD10~Y1PD1 とした.橋梁 平面図を図1に示す.振動モードの算出を目的とし て,図2に示す a1~c3 まで計9点の計測点を床版 に,d1~d4 まで計4点の計測点を横桁の下フランジ 下部に設定した.

図2 計測点概略図(左:平面図 右:断面図)

長崎大学 大学院 正会員 森田千尋,出水享,松田浩 中日本ハイウェイ・エンジニアリング東京㈱ 非会員 安田英明

> 計測はサンプリング周波数 500Hz とし、車両規制な どを行わず一般車両のランダムな加振状態で行った.

3.計測結果

3.1 振動モード算定

c1 点でのフーリエスペクトル図を図3に示す.他の計測点でも同様な卓越振動数が検出され,それぞれ 3.2Hz, 11.8Hz であった.

計測から得られた 3.2Hz, 11.8Hz における a 列~c 列の固有振動モードと各計測列(a 列~c 列)の振動モ ードを橋軸直角方向の振幅比で結合して得られた全 体モードを図 4 に示す.図 4 には解析ソフト Marc²⁾ を用いた振動解析の結果(3.2Hz)も併せて示す.解 析結果と計測結果を比較するとモード形状が概ね一 致していることがわかり,LDV を用いた振動モード 算定の有効性が確認できた.

3.2 レーザ照射ターゲットの検討 I

設置困難な箇所を計測する場合のターゲットの検 討を行った.今回はスプレータイプと塗料タイプ(写 真3)を用い,シールタイプと比較を行った.比較は 卓越振動数とb列の振動モード形状で行った.

卓越振動数はどのタイプも 3.2Hz, 11.8Hz で検出 された.各タイプの1次,2次モードを図5に示す. 3.2Hz での1次モード,11.8Hz での2次モードとも にシールタイプに近いモード形状が算定された.よ って,スプレー・塗料タイプは1次モード,2次モ ード共にシールタイプに近い形状が算定されること がわかった.

3.3 レーザ照射ターゲットの検討Ⅱ

桁下からでは検出が困難な橋軸直角方向の振動が 計測可能か検証した.反射ターゲットは三角形の2 面にシールを貼付した立体ターゲット(写真4)と した.計測にはLDVを2台使用し,同期計測をっ た.そして,構造物の垂直・水平の振動を立体ター ゲットの垂直方向の速度変化として計測した.計測 方法を図6に示す.水平振動の場合,LDV1は反射 したレーザー光の波長が入射光よりも長く検出さ れ,LDV2は波長が短く検出される.これらの速度 波形を減算すると水平振動の速度が算出されると推 測した.波形処理方法を表1に示す.計測点は図2 に示すd列の4点とし,同点には比較のため加速度 計も設置した.

加速度計と波形処理を行った LDV の計測結果か ら算出した d2 点でのフーリエスペクトル図(図 7) は概ね一致していた.また,他の3点でも同様の結 果が得られた.図7より橋軸直角方向の卓越振動数 は3.5Hz付近であることがわかった.ここで3次元 モデルの解析結果で3.5Hz付近の桁部の振動モード を図8に示す.この図8は主桁・横桁のみを拡大表 示させた3次元モデルの平面図である.解析結果か らも3.5Hz付近で橋軸直角方向の振動モードが確認 できた.

4.まとめ

- ・振動モード算定における LDV の有効性が確認で きた.
- ・スプレー・塗料は1次2次共にシールに近い振動
 モード形状が算定された.
- ・三角ターゲット,波形処理を使用することで橋軸
 直角方向の振動が桁下から計測できた.

参考文献

- 1)上半文昭:構造物診断用非接触振動測定システム「Uドップラー」の開発,鉄道総研報告,第21巻,第12号, pp.17-22,2007.12.
- 2) $\hat{M}SC$ Software : MSC.Marc 2008 rl VolumeA \sim E, 2008

写真3 レーザ照射ターゲット

図5 ターゲット別振動モード計測結果

表1 波形処理方法

構造物	波長		油 由 址 形 加 理
振動方向	LDV1	LDV2	迷皮仮形処埋
橋軸直角方向	長	短	減算
橋軸鉛直方向	短	短	加算

mm/sec² sec

図7 フーリエスペクトル図(橋軸直角方向)

