九州大学大学院 学生会員 〇伊藤 耀 九州大学大学院 フェロー 大塚 久哲 九州大学大学院 学生会員 高 文君 九州大学大学院 正会員 梶田 幸秀 九州大学大学院 正会員 崔 準祜

1. 目的

本研究の対象としているフレキシブル RC 橋脚は, ラー メン橋脚に薄い耐震壁を挿入した橋脚である. 当該橋脚の 橋軸直角方向の復元力特性を適切に評価するため, 実橋脚 の約 1/10 の模型供試体を作製し, 一定軸力下における正負 交番載荷実験を行った¹⁾.本稿では, その実験結果に対し て,3次元非線形有限要素解析を行い,最大耐力,ひび割 れ性状,鉄筋降伏などについて解析モデルによる実験の再 現性検討した.

2. 供試体概要及び解析概要

実験時の供試体ケースを表-1 に示す.鉄筋とコンクリートの材料特性に関しては参考文献 1)に表記している.本実験では軸力比を 0.05 とし、一定軸力は 156kN と設定している.水平載荷方向は水平ジャッキの押しを正、引きを負として正負交番漸増載荷を行った.

図-1に実験供試体,図-2に解析モデル図を示す.FEM 解析ソフトにはコンクリート系構造を対象としたFINAL を利用した.コンクリートを solid 要素とし,梁鉄筋,柱主 鉄筋,壁縦方向鉄筋をトラス要素とし,柱帯鉄筋,壁横方 向鉄筋を埋め込み要素としてモデル化を行った.軸力は実 験時と同様に一定軸力が四点分布となるように,四節点に それぞれ 39kN ずつ荷重を加えている.また,3次元解析に おいて1点載荷によるコンクリートの局所的な破壊を防ぐ ために供試体両柱頂部に載荷板を設置し,左右の載荷板の 間 PC 鋼棒をモデル化した.

コンクリートと鉄筋の材料構成則を以下に示す.材料特 性は実験における材料試験で得られた値を用いた.コンク リートの圧縮応力とひずみの関係及び圧縮軟化特性は修正 Ahmadモデルを用いた.コンクリートの引張応力とひずみ の関係はテンションスティフニング特性を考慮し,出雲ら のモデル (c=0.6)を用いた.コンクリートのひび割れ後 のせん断伝達特性はAl-Mahaidiモデルとした.

3. 解析結果

3.1. 荷重-変位曲線

各供試体について有限要素解析により得られた荷重-変位曲線と実験値を比較した結果を図-3~図-6に示す.実 験では、すべての供試体においてコンクリートのひび割れ の発生により剛性が若干低下し、その後、柱主鉄筋、壁縦 方向鉄筋といった軸方向の鉄筋降伏により剛性がさらに大

	表-1	供試体	ケース	
#+⇒+/+No	鉄筋径	及び配筋間隔	(鉄筋比(%))
洪武平110.	柱主鉄筋	柱帯鉄筋	壁縦筋	壁横筋
K1		D6ctc120 (0.26)		D10ctc120 (0.99)
K2	<u></u>	D6ctc40 (0.79)	5-D10	D13ctc120 (1.76)
K3		D6ctc120 (0.26)	(1.19)	D13ctc60 (3.52)
K4		D6ctc40 (0.79)		D13ctc60 (3.52)

きく低下した.3次元有限要素解析においてもひび割れや 軸方向鉄筋降伏により剛性が低下する現象が再現できた. また,表-2に各供試体の剛性と最大耐力に関して実験値と 解析値とを比較した結果を示す.ここで,初期剛性をひび 割れ発生時までの剛性,二次剛性をひび割れ発生後から軸 方向鉄筋降伏までの剛性と定義する.すべての供試体にお いて初期剛性値,二次剛性値ともに解析値が実験値を上回 る結果となったが,最大耐力は概ね一致していることが確 認された.

3.2. ひび割れ性状

図-7, 図-8 に供試体 No.K1 におけるひび割れ状況を示す. 解析では荷重 103.9kN において柱基部に水平曲げひび割れ と壁部分に斜めせん断ひび割れの発生が確認された.実験 時にも荷重 110kN において両方のひび割れ発生が確認され ており,ひび割れ発生事象を良好に再現できているといえ る.また,実験では終局状態において圧縮側柱基部のせん 断圧壊に伴い壁部分がせん断破壊し急激な耐力低下が生じ たが,解析でも柱基部と壁部分全体でのひび割れやコンク リート軟化が目立つため,終局時のひび割れ性状を概ね再 現できている.No.K2~No.K4 についても同様の傾向が見 られた.

3.3. 鉄筋降伏状況

供試体 No.K1 における鉄筋降伏状況を図-9, 各鉄筋の降 伏時の載荷荷重を表-3に示す.実験と解析の鉄筋降伏荷重 を比較すると、柱主鉄筋については、すべての供試体で解 析結果が実験結果を上回っているが概ね再現できている. 壁縦方向鉄筋については、供試体 No.K1, No.K3 では鉄筋 降伏荷重をやや過小評価し、供試体 No.K2, No.K4 ではや や過大評価しているが、概ね鉄筋降伏荷重を評価できてい ることが分かる.また,柱帯鉄筋と壁横方向鉄筋について は、実験では鉄筋降伏が確認されていない箇所において、 解析では鉄筋降伏が確認されるなど、解析と実験との結果 に大きな差異が生じている.このことから、解析では、柱 帯鉄筋、壁横方向鉄筋のような横方向鉄筋の降伏状態の再 現性は低いものの、柱主鉄筋、壁縦方向鉄筋のような軸方 向鉄筋の降伏荷重を概ね再現できていることがわかる.横 方向鉄筋降伏の再現度が低い理由として, 横方向鉄筋を埋 め込み鉄筋としてモデル化を行ったため、トラス要素とし てモデル化を行った軸方向鉄筋よりも精度が悪くなったと 考えられる.

4. まとめ

本稿では、フレキシブル橋脚の交番載荷実験に対して非 線形有限要素解析を行い、解析モデルの妥当性を検討した.

荷重-変位曲線の比較では、初期剛性値、二次剛性値と もに解析値が実験値を上回ったが、最大耐力は概ね一致し ている.また、横方向鉄筋に関しては再現性が低いものの、 ひび割れ発生荷重や軸方向鉄筋降伏荷重など、剛性が変化 する点を解析上で概ね捉えることができている. 参考文献

1) 高文君,大塚久哲,河邉修作,今村壮宏:軸力と交番

載荷を受ける I 型断面フレキシブル RC 橋脚の復元力 特性とエネルギー吸収に関する実験的研究, コンクリ ート工学年次論文集, Vol.35, No.2, pp.397-402, 2013.

表-2 剛性と最大耐力の比較

(a)	(a)供試体 No.K1			(b) 供試体 No.K2			
項目	初期剛性	二次剛性	最大荷重	項目	初期剛性	二次剛性	最大荷重
ЛН	(kN/mm)	(kN/mm)	(kN)	24	(kN/mm)	(kN/mm)	(kN)
解析	75.8	18.49	302	解析	75.95	17.86	339
実験	51.89	13.73	308	実験	57.99	14.08	321
き 古 ~ ま	1.46	1.25	0.00	A77+C / 中 手	1.21	1.27	1.06

(c)	供試体 No.K3			(d) 供試体 No.K4			
項目	初期剛性	二次剛性	最大荷重	項目	初期剛性	二次剛性	最大荷重
ЧКЦ	(kN/mm)	(kN/mm)	(kN)	X II	(kN/mm)	(kN/mm)	(kN)
解析	77.08	20.21	327	解析	75.05	21.08	347
実験	59.81	18.72	318	実験	65.35	18.31	324.5
解析/実験	1.29	1.08	1.03	解析/実験	1.15	1.15	1.07

図-7 供試体No.K1における壁部分のひび割れ発生状

図-8 供試体No.K1における終局時のひび割れ状況

図-9 供試体No.K1における鉄筋降伏状況

表-3 各供試体の鉄筋降伏時荷重

供	試体	鉄筋降伏值(kN)				
No.		柱主鉄筋	壁縦筋	柱帯鉄筋	壁横筋	
K1	実験	241.75	281.75	269.00	278.25	
	解析	254.75	265.27	210.88	196.00	
K2	実験	237.50	283.25		Ι	
	解析	272.07	298.54	214.96	219.59	
K3	実験	235.50	287.50	283.25	Ι	
	解析	267.06	286.63	157.17	206.75	
K4	実験	254.50	278.75			
	解析	258.04	330.22	196.25	233.86	