九州産業大学	学生会員	松丸	沙織	九州産業大学	正会員	林	泰弘
ワールド・リンク	非会員	藤	龍	ワールド・リンク	フェロー	山岡	礼三
九州産業大学	正会員	松尾	雄治	ワールド・リンク	非会員	藤	浩史

1. はじめに

筆者らは、中性改良剤を用いて軟弱な底泥を粒状固化処理し、盛土などの材料として活用することを目指 している。本研究では、コーン指数が概ね 400kN/m²以上の第3種建設発生土に分類された処理土¹⁾に対し て変水位透水試験と非圧密非排水三軸圧縮試験を実施し、力学特性を検討した。

2. 粒状固化処理土の作製

対象試料として博多湾のアイランドシティ沿岸より採取した底泥(IC底泥)と網走湖の底泥(AB底泥)を使用した。表1に原泥の特性を示す。IC底泥はシルト分、AB 底泥は砂分が多く、IC底泥はMHに、AB底泥はSFに分類 された。

これらの底泥の含水比を液性限界に調整し、固化助剤 として中性改良剤(DS)を混合したのち、固化材とし て生石灰(L)または高炉セメントB種(B)を混合し

て粒状固化処理した。中性改 良剤はシラスを主成分とする ものであり、土粒子表面の電 荷状態を変えることで凝集、 団粒化するとともにポゾラン 反応によって泥土を改良する ものである。処理土を 20±

表	1	対象試	料の	物理	特性
1	т.			1222	1111

	IC底泥	AB底泥
土粒子の密度 g/cm ³	2.732	2.553
礫分%	0	0.4
砂分%	14.8	54.7
シルト分%	79.9	19.9
粘土分%	5.3	25
均等係数 Uc	6.4	1620
曲率係数 Uc'	1.2	3.95
液性限界 w _L %	110.6	62.8
塑性限界 wp%	43.0	34.4

表2 1 Ec で締固めた供試体の物理特性とコーン指数

	含水比(%)	乾燥密度(g/cm ³)	飽和度(%)	コーン指数(kN/m ²)
IC+L160	73.0	0.920	95.7	708
IC+DS5+L120	75.9	0.843	96.2	455
IC+DS5+B100	90.5	0.765	94.4	537
AB+L160	43.6	1.178	96.5	515
AB+DS3+L120	45.0	1.150	96.4	413
AB+DS3+B120	52.2	1.093	92.3	382

3℃の恒温庫に1時間放置後再度混合し、同恒温庫で7日間養生した。

本研究に用いた供試体は、9.5mmふるいを通過するようにほぐした処理土をEc=550kJ/m³(1 Ec)で突固め て締固めたものを使用した。表2に物理特性とコーン指数を示す。表中の名称「IC+DS5+L80」はIC 底泥に中 性改良剤5 kg/m³ と生石灰80kg/m³ を混合した処理土であることを示している。

3. 透水係数

JISA 1218:2009 に基づいて変水位透水試験で求めた 透水係数を図1に示す。どの配合も10⁻⁸~10⁻⁷(m/s)のオ ーダーであることが分かる。この値は砂-シルト-粘土混 合土と同程度の透水係数である。粒状固化処理を行って いるが、突固めによって粒子が破砕され、よく締固まる ため透水係数が低くなったと考えられる。

4. 非圧密非排水せん断特性

三軸圧縮試験は JGS 0523-2009 に基づいて非圧密非 排水条件で行った。図 2 に等方応力 σr=30kPa と σr=

120kPaの応力ひずみ曲線を示す。IC 底泥の石灰処理土は等方応力が低い場合、セメント処理土は等方応力 が高い場合にピークが表れている。AB 底泥は等方応力に関係なくピークが表れていることが分かる。ま

図1 透水係数と固化材添加率の関係

た、 $\sigma_r = 120$ kPa で比較するとコ ーン指数が大きいものから順に高 い最大圧縮応力が得られている。 図 3 にせん断強さと等方応力の関 係を示す。この図の近似直線から 求めた内部摩擦角 ϕ_u と粘着力 c_u の関係を図 4 に示す。どの配合も 粘着力は 15~25 (kN/m²) 程 度、内部摩擦角は 5°程度以下で あった。

図5に破壊ひずみと等方応力の 関係を示す。IC 底泥の石灰処理 土は、いずれも等方応力の増加に 伴って破壊ひずみが増加している が、AB 底泥の石灰処理土はほぼ 変化していないことが分かる。 図6に変形係数と等方応力の関 係を示す。IC+DS5+L120を除 くと等方応力の増加に伴って変 形係数が大きくなっていること が分かる。IC+DS5+L120はシ ルト分が多い材料でコーン指数 も低く、土粒子間の結合力が弱 かったためではないかと考えら れる。

5. まとめ

概ね第3種建設発生土に分類 された粒状固化処理土を1Ec で締固めたものは、透水係数や 強度定数においては粘性土とみ なせることが分かった。等方応 力の変化に伴う応力ひずみ曲線 や破壊ひずみ、変形係数への影 響は原泥や固化材の種類・配合 によって違いがみられた。今 後、圧密試験や非圧密排水試 験、また試料や配合を増やすこ とによって、より詳しく力学特 性を検討する予定である。

謝辞:本研究は(社)九州建設技術管理協会研究開発助成(研究代表者:藤浩史)による成果の一部である。ここに記して謝意を表す。 参考文献:1)太田健之ほか:底泥の粒状固化処理における細粒分の影響、平成24年土木学会西部支部研究発表会講演概要集、pp。449-450、2013.3.