九州工業大学大学院 正会員 九州工業大学工学部 学生会員 平松 裕樹 重枝未玲 九州工業大学大学院フェロー会員 秋山壽一郎 九州工業大学大学院 正会員 坂本 洋

1.はじめに

近年,河川の維持管理は,本格的な計画管理へと移行している.計画的な維持管理を行うためには,出水や河川 改修が河床や河道に及ぼすインパクト,すなわち出水や河川改修によって生じる中長期的な 河床や河道の変動,

河床材料の質の変化 と によって形成される安定河床・河道形状を把握することが不可欠である.本研究 は、河川の維持管理上、極めて重要な地点となる河川分流点周辺を対象に、準3次元混合砂礫河床変動モデルの流 れと河床変動および河床の質の変化の予測精度を検証したものである.

2.準3次元混合砂礫河床変動モデルの概要

準3次元混合砂礫河床変動モデルの基礎方程式は,式(1)の連続の式と運動方程式およびモーメント方程式,式(2) の全粒径の流砂の連続の式と式(3)の同式と交換層の概念に基づく粒径別の流砂の連続の式から導かれる交換層で

の粒度比率 F_i の時間変化の方程式である . $\frac{\partial U}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} + M_1 + M_2 + S_1 + S_2 = 0$ (1)	$\boldsymbol{U} = \left(h, Uh, Vh, u'h, v'h\right)^{\mathrm{T}};$
ここに, U=保存量ベクトル, E, F=x, y 方 $\left(1-\lambda_{b}\right)^{\frac{\partial Z_{b}}{\partial x}+\frac{\partial (q_{BT_{b}})}{\partial x}+\frac{\partial (q_{BT_{b}})}{\partial x}=0$ (2)	$E = \left(Uh, U^2h + \frac{1}{3}u'^2h + \frac{1}{2}gh^2, UVh + \frac{1}{3}u'v'h, Uu'h, Uv'h + \frac{1}{3}u'v'h, Uv'h + \frac{1}{3}u'v'h, Uu'h, Uv'h + \frac{1}{3}u'v'h, Uv'h, Uv'h + \frac{1}{3}u'v'h, Uv'h, Uv'h + \frac{1}{3}u'v'h, Uv'h, Uv'h + \frac{1}{3}u'v'h, Uv'h, Uv'h + \frac{1}{3}u'v'h, Uv'h + \frac{1}{3}u'v'h + \frac{1}{3$
向の流束ベクトル, $M_{1,2}$ =非保存項ベクトル, $\begin{vmatrix} a & a & b \\ (1-\lambda_b) \begin{bmatrix} L_a \frac{\partial F_j}{\partial t} + (F_j - f_g) \frac{\partial L_a}{\partial t} \end{bmatrix}_{=}$	$\mathbf{F} = \left(Vh, UVh + \frac{1}{3}u'v'h, V^2h + \frac{1}{3}v'^2h + \frac{1}{2}gh^2, Vu'h, Vv'h \right)$ $= \left(0, 0, 0, u'h \frac{\partial U}{\partial u}, u'h \frac{\partial V}{\partial v} \right)^T \cdot \mathbf{M} = \left(0, 0, 0, v'h \frac{\partial U}{\partial u}, u'h \frac{\partial V}{\partial v} \right)^T$
S_1 =河床勾配ベクトル, S_2 =せん断応カベクト $\begin{vmatrix} \Box & a & a \\ \delta(q_{By}) & \delta(q_{By}) & \delta(q_{By}) \end{vmatrix}$	$S_{1} = (0,0,0,u,u,\frac{\partial u}{\partial x}, u,u,\frac{\partial u}{\partial x}), M_{2} = (0,0,0,v,u,\frac{\partial u}{\partial y}, v,u,\frac{\partial u}{\partial y})$ $S_{1} = (0,gh\partial z_{h}/\partial x, h\partial z_{h}/\partial y, 0,0)^{T};$
ル, U, V = x, y 方向の水深平均流速, u',	$S_{2} = \left(0, \tau_{bx} / \rho, \tau_{by} / \rho, -3\tau_{bx} / \rho + 6\overline{\tau}_{zx} / \rho, -3\tau_{by} / \rho + 6\overline{\tau}_{zy} / \rho\right)$
$v'=流速の偏差成分,h=水深,g=重力加速度,z_b=河床高,\tau_{hx,v},\overline{\tau}_{x,v}= 底面せ$	・ 粒度比率 V Us,Vs
ん断応力と鉛直方向の流速差によるせん断応力, λ_b =河床材料の空隙率, q_{BTx} ,	$F_{j}(x,y,t) \rightarrow F_{j}(x,y,t) \rightarrow F_{j$
$q_{BTy}=x$, y 方向の流砂量, $j=j$ 番目の土砂の粒径を表す添字, $f_{1j}=$ 交換層と貯留層	$F_{bj}(x,y,t)$ → Z_b
との境界での粒度比率 ,L _a =交換層の厚さ ,F _j =交換層での粒度比率 ,q _{BTx} ,q _{BTy} =x ,	····································
y 方向の全流砂量である.図-1 に定義図を示す.	

基礎方程式の離散化を有限体積法に基づき行った.時間積分には Euler の陽解 法を,連続の式と運動量・モーメントの保存式の数値流束には,HLLC法¹⁾に河 床勾配の取り扱いを組み込んだ数値流束を,河床変動の数値流束と粒度比率の 数値流束には,それぞれ風上型の数値流束を用いた.

3.実験の概要

実験水路は,図-2に示すような長さ9.0m×幅1.8mの可変勾配水路中に,ア クリル製の長さ 9.0m,高さ 0.25m,幅 B1=0.5m,勾配 I=1/1,000の本川と,角度 θ =30°で分流させた長さ 2.6m , 高さ 0.25m , 幅 B_3 =0.25m , 勾配 I=1/1,000 の支川

を設置したものである.実験は,分流点上下流の本川の幅が,等しい場合(CaseA),狭い場合(CaseB)の2 通りを想 定し, 一様砂床と混合砂礫床で行った. 一様砂床では粒径 0.89mm, 水中比重 1.65 の一様砂を高さ 0.14m で敷き詰 めた.また混合砂礫床では粒径 3.75mmの礫と粒径 0.89mmの砂を 3:7の割合で混合し,平均粒径 1.75mm,水中比 重 1.67 の混合砂礫を高さ 0.14m で敷き詰めた 実験条件の詳細は 表-1 に示す通りである 測定項目は、水位 H(m), 河床高 $Z_b(m)$,分派流量 $Q_3(m^3/s)$ および分派流砂量 Q_{s2} , $Q_{s3}(m^3/s)$ および河床表層と分派流砂量の粒度分布であり, 上流端から流量 Q₁=0.015(m³/s)を流入させ,下流端から流出した土砂と同量の給砂を行い,本・支川の流量および流 砂量が一定であり,目視で河床高に大きな変化がなくなったことを確認した後,測定を開始した.水位はポイント ゲージで,河床高はレーザー変位計で測定した.分派流量はバケツで水を回収し,分派流砂量はふるいで砂を回収 し、それぞれ水の体積および砂の重量と時間を計測することで算定した. CaseA, B-cの表層での砂礫の割合は、デ

 $p + 6\overline{\tau}_{-}/\rho$

Datum

4. モデルの検証

各 Case の解析対象領域を 1537~2102 個の三角セ ルで解析領域を分割し、流れの境界条件には上下流 端にそれぞれ流量と水位を 河床変動の境界条件に は上流端には流下方向の流砂量を,下流端には河床 高を与えた.河床材料の空隙率λ,=0.4を与えた. 図-3はCaseA-b-2,3,CaseB-b-3の本川・支川の水, 路中心軸での水面と河床形状について,図-4 は初 期河床を基準面とした河床高コンターについて,解 析結果と実験値との比較を行ったものである.本モ デルは 図-3から(1) CaseB-b-3の局所洗掘を除き, 水面および河床形状を再現できること,図-4から (2) CaseA-b の支川左岸側で堆積が生じること,(3) CaseA-b-2 の分流点下流の本川右岸側で堆積が生じるこ と,一方 CaseA-b-3 では分流点下流の本川右岸側で堆積 が生じないこと, (4) CaseB-b-3 では本川上流で堆積が生 じること,また支川右岸側で洗掘が生じること,などを 再現できることが確認できる.一方,(1) CaseA-b, B-b

の支川右岸側の局所洗掘,(2) CaseA-b-2の本川左岸側での局所洗掘などを再現できないことが確認できる.図-5 は CaseA-c-1~3の本川・支川の河床表層材料中の礫の割合について解析結果と実験値との比較を行ったものである.こ れより,(1) 分流点上流では主に砂が流送されるため,礫の割合が高くなる様子,(2) 分流点周辺では砂が礫上で堆 積するため,そこでの礫の割合が小さくなる様子を再現できることが確認できる.一方,(3) 分流点周辺の局所洗 掘を再現できないために,そこでの礫の割合などを再現できないことが確認できる.図-6 は分派流量の比較を,表 -2 は,分派流砂量比の比較を行ったものである.これより,(1) 分派流量は1割程度の誤差の範囲で再現できるが, (2) 分派流砂量は,再現できないことが確認できる.これは,分派流量は1割程度の誤差の範囲で再現できるが, 定常であれば,分派地点での流速分布等が少々異なっても再現できるのに対し,分派流砂量は分派地点での流速分 布等に大きく影響するため,局所洗掘などを再現できない本モデルでは誤差が生じたと考えられる.この誤差の要 因は,本モデルが静水圧分布を仮定した準3次元モデルであり,鉛直方向の流れを考慮できないためである.

本研究から,本準3次元混合砂礫河床変動モデルは,(1)分流点周辺の河床変動や河床の質を概ね再現可能であるが,(2)局所洗掘等を再現できないために分派流砂量等の再現に問題が残ることが確認された.このことから,中長期の河床変動を予測可能にするためには,本モデルを,非静水圧と鉛直方向の流れを取り扱うことが可能なモデルとするとともに,本モデルと非静水圧モデルのハイブリッドモデルを構築することで計算効率の向上を図る必要がある.これらについては今後検討したいと考えている.

謝辞:本研究は,科学研究費補助金若手研究 B(課題番号:25820225,研究代表者:重枝未玲)の助成を受け実施したものである.こ こに記して感謝の意を表します.

参考文献: 1) Toro, E. F. et al.: Restoration of the contact surface in the HLL Riemann solver, Shock Waves, Vol.4, pp.25-34, 2004.