欠陥及び介在物を有する圧縮石膏板のひび割れ発生・進展の可視化

長崎大学 学生会員 〇博多屋 智志 長崎大学大学院 学生会員 前田 弦輝 長崎大学 正会員 松田 浩

1. はじめに

コンクリート構造物の長寿命化の観点から,新設構 造物では初期の品質を確保するために、温度応力ひび 割れや収縮ひび割れを抑制するための材料側面からの 進歩が著しい.一方既設構造物では、鉄筋腐食やアル カリ骨材反応のような個々のひび割れ発生要因の明確 化やひび割れ進展に対する防止対策などがかなり検討 されている 1).

このような状況に対し、ある現象に対して構造物内 にどのようにひび割れが発生し、それが供用期間内で の時間・空間スケールでどのように進展していくかの 検討は比較的少ないと思われる. しかしながら, ひび 割れそのものを応答値として扱いその進展を明らかに することや、ひび割れ進展が構造性能の応答値や限界 値に与える影響が明らかにできれば、将来予測を含む コンクリート構造物の性能評価や維持管理の高度化に 繋がると考えられる.

そこで本研究では、均一性の高い脆性材料である石 膏板に、コンクリート内部の空隙や骨材を想定した欠 陥および介在物を導入し、ひび割れ発生・進展に及ぼ す影響を検討した.計測には、ひび割れ進展に伴うひ ずみ分布を捉えるため非接触かつ全視野で計測可能な デジタル画像相関法を用いた.

2. 試験概要

本試験では円孔や介在物、き裂を有する石膏板を対 象として一軸圧縮試験を行った. 試験体は幅 50mm× 高さ 100mm×厚さ 8mm の寸法を有し、水と石膏を重 量比 1:5 の配合で作成した. 試験体の材料特性を表 1 に示す. 試験体は円孔を導入したものと, 介在物とし て丸鋼を導入したもの、2本のき裂を導入したものを 作成した.円孔および介在物の寸法は直径 9mm と 19mm とし、それらを4つの pattern とした. 作成した 試験体の概略は図1に示す.また,2つき裂導入板で はき裂角度を α =15°,き裂間の角度を β =15°,90°, 105°, 135°, 180°とする 5 つの type の試験体を作 成した. 作成した試験体の概略は図2に示す.

試験は 2000kN 万能試験機にて試験体が破壊するま で行い、載荷速度はおよそ 0.1kN/秒とした. 試験機と 試験体の間にはテフロンシートを敷き、接地面との摩 擦を軽減させた.計測にはデジタル画像相関法を用い, 2 台のカメラにより、載荷開始から破壊まで1 秒間隔 で撮影した. 撮影された画像は約 0.08mm/pixel で構成 される. 撮影時は試験体表面の明るさを一定に保つた め, 白色 LED ライトを2台用いた.

試験体の材料特性 表1

図 2 試験体概略

type5

 $\beta = 180^{\circ}$

type2

 $\beta = 90^{\circ}$

50

type3

β=105°

き裂導入箇所拡大図

β:き裂間の角度

a:き裂角度

type1

 $\beta = 15^{\circ}$

50

type4

 $\beta = 130^{\circ}$

3. 試験結果 .

円孔,介在物を導入した試験体の最大荷重を表 2 に 示す. pattern 1 と pattern 2 では、円孔の直径が大きくな ると僅かながら最大荷重が小さくなる傾向にあった. pattern 3 と pattern 4 では,介在物の直径による最大荷重 の違いはほとんど見られなかった. デジタル画像相関 法により得られた円孔を有する石膏板の最大主ひずみ 分布図を図3に示す.デジタル画像相関法により、ひ び割れ発生までのひずみ値を計測範囲全体にわたって 連続的に把握することができた.図3より pattern 1 と pattern 2 の場合、実際のひび割れ発生箇所と同様に、円 孔上下部にひずみの集中領域を確認することができた. また、pattern 2 で発生した載荷方向と垂直なひび割れは、 円孔上下部のひび割れが発生した後に, y 方向ひずみ が増大したことで発生したものと確認できた. pattern 3 と pattern 4 の場合, ひずみの集中箇所が, 介在物導入部 ではなく、試験体下端で確認できた.これは、欠陥の ない試験体と酷似した破壊挙動であり,介在物のよう な剛性の異なる物質の混入によるひび割れ発生への影 響はないものと考えられる.円孔および介在物の直径 に着目すると, pattern 1 と pattern 2 の場合, 円孔の直径 が小さくなるほど,同じ荷重状態における円孔上下部 のひずみ集中が小さくなり, ひび割れの発生も遅くな ることが確認された.このことから、円孔周辺のひず み分布およびひび割れ発生状況は,円孔の直径により 変化すると考えられる.

2 つき裂の試験体の最大荷重を表 3 に示す.表 3 の 結果より, type1 は他の試験体に比べ最大荷重が大きか った.これは type1 が β <90°であり,2 つのき裂が繋 がりにくい配置にあることが原因であると考えられる. このことから,き裂の配置が最大荷重に大きく影響を 与える事が確認できた.また,type1 と type2, type5 の 最大主ひずみ分布図を図4に示す.図4より,き裂の 配置に関わらず,載荷初期ではき裂1つ1つから独立 して Wing Crack が発生する傾向にあった.この Wing Crack が大きく進展し,2 つのき裂を連結する事によ って最大荷重が小さくなると考えられる.

4. まとめ

 ・試験体の最大荷重は、Wing Crack が連結すると 最大荷重が小さくなる傾向からき裂角度だけでなく、
き裂間のβの違いで構成されるき裂の配置による影響 が大きい事を確認できた。

・載荷初期では Wing Crack はき裂の配置に関わらず1つ1つ独立して発生する.

・介在物はひび割れ挙動にほとんど影響を及ぼさな いと考えられる.また,介在物の直径による最大荷重 の違いはほとんど見られなかった.したがって,介在 物が剛性の違いにより破壊挙動に及ぼす影響は比較的 小さいと考えられる.

【参考文献】

 R.H.C. Wong, K.T. Chau, C.A.Tang, P.Lin : Analysis of crack coalescence in rock-like materials containing three flaws

