角柱粗度を有する開水路粗面乱流における抵抗則と運動量輸送

熊本大学工学部社会環境工学科 学生会員 瓜生 俊作 熊本大学大学院工学部自然科学研究科 正会員 大本 照憲

1目的

河川の治水安全度を評価する上で、その基本は流 れの抵抗則の確立であり、粗度係数の予測精度の向 上が重要である。実河川における流れの抵抗特性は、 多種多様な境界条件によって規定される。そのため、 現状では経験的に得られた見かけの粗度係数によっ て判断され、既知の境界条件から数理的に算定する ことは困難である。

基本的知見である開水路流れにおける完全粗面乱 流の抵抗則は、河川粗度の形状、配列および大きさ、 流れの条件に依存しており、従来多くの研究によっ て重要な知見が積み上げられてきた。人口粗度を用 いた抵抗則の代表例である、二次元粗度として桟粗 度や溝粗度、三次元粗度としてイボ粗度や球状粗度 の抵抗特性が検討されて来た。

しかし、単純化された人口粗度モデルとして二次 元粗度と三次元粗度に関して抵抗則や流れの内部構 造から比較した研究事例は極めて少ない。

本研究では、二次元粗度と三次元粗度における流 れの抵抗および乱流構造についてより厳密に比較す るために粗度として角柱粗度を選び PIV を用いて流 れの抵抗および運動量輸送について検討した。

表1 桟型粗度の実験条件

勾配(Ⅰ₀)	粗度高 k(mm)	流量(1/s)	
1/500	5	1~10	
	10		

表2 流速計測の実験条件

	case1	case2
平均流速 Um(cm/s)	12.56	11.81
水深 H(cm)	7.96	8.47
水路勾配I ₀	1/500	1/500
アスペクト比 B/H	5	4.7
フルード数 Um/(gH) ¹	0.14	0.12
レイノルズ数 UmH/ v	10000	10000
相対粗度 k/H	0.126	0.118
粗度厚 k(mm)	10	10
摩擦速度U ₀ (cm/s)	3.95	4.07
Q(1/s)	4	4
粗度配列	2dim	3dim

2 実験装置および実験方法

長さ10m、幅40cm、高さ20cmの水路を用い、水路上流端から2mの位置から流化方向に6mに亘り粗度を配列した。(図1) 粗度はステンレス製から成る 一辺 k=a=10mmの正方形断面および k=5mm、 a=10mmの長方形断面の角柱粗度を使用した。

粗度の縦・横断配列を図2に示す。流化方向の粗 度間隔 λ 、横断方向の粗度間隔 δ を系統的に変化さ せ、流れの抵抗は粗度高kで無次元化された λ/k が 4~16、 $\delta/k=0.5~4$ の範囲で実験を行う。

また粗度の抵抗則の実験条件を表1に、二次元粗 度および三次元粗度を用いて粗面乱流を計測した実 験条件を表2に示す。

水路に設けた堰を調整し等流場を形成し、ポイン トゲージを用いて等流水深を計測した。また、流速 の計測には非接触型画像処理法である PIV を用いた。

3 結果

角柱を用いた二次元粗度と三次元粗度における抵 抗特性の違いを検討するために、代表粗度径、水路 勾配および流量が同一の条件下で粗度間隔を縦断・ 横断方向に系統的に変化させ等流水深を計測した。

図 3 は流量を 4l/s に設定し、縦断方向に粗度間隔 を系統的に変化させた結果を示す。相対粗度間隔 λ/k を 4~16 の範囲で変化させた場合、粗度高さ k=5mm,k=10mm のいずれに対しても三次元粗度は 二次元粗度に較べて抵抗が大きくなること分かる。

図4は、本実験で相対粗度間隔 λ /kの変化に対し て流れの抵抗が最も大きい粗度高 k=10mm、相対粗 度間隔 λ /k=10 および粗度高 k=5mm、相対粗度間隔 λ /k=8 の組み合わせにおいて一定流量 Q=4l/s、横断 方向の相対粗度間隔 δ /k に対する等流水深の変化を 示す。相対粗度間隔 δ /k<1.5 では三次元粗度は二次 元粗度に較べて等流水深が大きく、流れの抵抗が大 きく、 δ /k>2 では等流水深が小さく、流れの抵抗が 小さいことが分かる。

図5より、乱れによる運動量輸送であるレイノル ズ応力は、直上流側のX_{RE}/b=0.8~0.9 で極大値を示す のに対して、三次元粗度ではそれよりも上流側の

X_{RE}/b=0.4 付近で極大値を示し、その値は若干三次元 粗度の方が大きいことが分かる。

また、図6より移流による運動量輸送は、下降流 により流入、上昇流により流出することから二次元 粗度および三次元粗度とも狭い範囲で強い流出、広 い範囲で弱い流入が発生していることが分かる。二 次元粗度に較べて三次元粗度では、運動量の流入の 極大値は上流側で発生し、その大きさは同程度であ るのに対して、流出の極大値は若干小さい。

参考文献

- 1) 足立昭平:流水抵抗と安定河道、石原藤治朗編水 工水理学、pp237-263
- 中山昭彦: DNS による開水路底面近傍速度場と 空間平均流場の検証、水工学論文集第50巻、 pp.757-762,2005.
- 大本照憲、柿原ゆり、崔志英:相対粗度の大きい 開水路流れの乱流特性について、水工学論文集、 第49巻、pp.511-516,2005